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Abstract: In this paper, we propose an algorithm for solving integer linear 
programming (ILP) problem with upper and lower bounded variables where we 
combined a cutting plane method with a heuristic. At each iteration, a relaxed 
problem is solved by the adaptive method and its optimal solution is submitted 
to a judicious rounding procedure. The concept of β-optimality is used to 
indicate the quality of the approximate solution obtained by this heuristic. In 
order to compare our method with the intlinprog method of the MATLAB 
optimisation toolbox, numerical experiments on randomly generated test 
problems are presented. 
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1 Introduction 

Integer linear programming (ILP) techniques are closely related to the modelling of 
problems whose decision variables are restricted to be integer. Although this restriction, 
ILP is used to model a wide variety of optimisation problems in extremely diverse 
application areas. This is one of the most active areas of the mathematical programming, 
and the volume of publications and the research that has been devoted to it since the early 
work of Gomory (1958) attest the difficulty of the subject and the importance of its 
applications. Indeed, ILP problems are difficult to solve, since they belong to the class of 
NP-hard problems (Karp, 1972; Garey and Johnson, 1979). 

Integer programming problems have been extensively studied by many researchers 
(Hu, 1969; Zionts, 1974; Salkin and Morito, 1975; Taha, 1975; Schrijver, 1986; 
Nemhauser and Wolsey, 1988; Parker and Rardin, 1988; Glover and Sherali, 2005). 
Hence, several studies and monographs on the integer programming and combinatorial 
optimisation have been published after the 80 years (Schrijver, 1986; Nemhauser and 
Wolsey, 1988; Llewellyn and Ryan, 1993) and recently new results are obtained 
(Schrijver, 2003; Jünger et al.. 2010; Lodi, 2010; Korte and Vygen, 2012); De Loera  
et al., 2012; Conforti et al., 2014; Fellah and Kechar, 2017; Eisenbrand and Weismantel, 
2018; Mei et al., 2018). 

There are three main categories of algorithms for solving integer programming 
problems: exact algorithms including cutting-planes, branch-and-bound and dynamic 
programming, completed by heuristic algorithms and approximation algorithms (Owen 
and Mehrotra, 2001; Marchand et al., 2002; Bertacco et al., 2007; Achterberg et al., 2012; 
Cornuéjols et al., 2013; Dey and Molinaro, 2018). The cutting plane methods have the 
disadvantage to provide often an integer optimal solution only at the end, thus they may 
take an exponential number of iterations, contrary to the heuristic methods that provide 
an approximate solution in a reasonable time, but without a guarantee on its quality. 

In this work, we use the adaptive method (Gabasov, 1993; Gabasov et al., 1995; Bibi 
and Bentobache, 2011, 2015; Djemai et al., 2016) for solving the relaxed problems. It is a 
primal-dual method that works with a support feasible solution (SFS) {x, JB}, where the 
vector x and the support JB (defining a basis) are defined independently, unlike a basic 
feasible solution. Hence, this SFS can scan all parts of the admissible region. This 
corresponds exactly to the nature of a linear integer programming problem where the 
maximum can be attained anywhere in the admissible region. By the way, in this 
algorithm we will use the interior and the active aspects of this method, which is 
intermediate between the interior points and active set methods (Roos et al., 1997; 
Wright, 1997; Vial, 1993; Gill et al., 1983; Fletcher, 1987). In addition, we will define 
the concept of β-optimality, which is an estimate for the quality of an approximate 
integer feasible solution. The different integer solutions will be obtained by a rounding 
procedure that is judiciously chosen over the course of the different cuts that will be 
added to the original relaxed problem. After proving that the added cuts are valid, we 
have developed an algorithm of resolution that is illustrated on a numerical example. 

This article is organised as follows: in Section 2 the problem is stated with some 
definitions. A review on the adaptive method is given in Section 3. A rounding heuristic 
will be the subject of Section 4, followed by a valid cut generating process. These two 
elements will be incorporated in the resolution algorithm described in Section 5 with a 
numerical example described in details. At the end, we finish with numerical experiments 
on generated random ILP problems and a conclusion. 
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2 Problem and definitions 

Let us consider an ILP problem with bounded variables, which is written in the following 
canonical form: 

max ,
( ) ,

, ,n

z c x
ILP Ax b

l x u x

′=
 ≤
 ≤ ≤ ∈ 

 (1) 

where A ∈ ℤm×n is an (m × n)-matrix, with rankA = m < n; b ∈ ℤm; c, x, l and u are vectors 
in ℤn. The symbol (′) represents the transposition operation. 

We set 

I = {1, 2, …, m} the rows index set of the matrix A 

J = {1, 2, …, n} the columns index set of the matrix A, with A = (aij, i ∈ I, j ∈ J) = (aj, j 
∈ J) 

Js = {1, 2, …, n, n + 1, …, n + m} the columns index set of the matrix (A| Im) = (aij, i ∈ 
I, j ∈ Js) = (aj, j ∈ Js), where aj is the jth column, Im is an identity 

m – matrix. 

So we consider the associated relaxed linear programming problem in standard form: 

max ,
( ) + ,

, , , ,

s
m

s s s n s m

z c x
PL Ax I x b

l x u l x u x x

′=
 + =
 ≤ ≤ ≤ ≤ ∈ ∈  

 (2) 

where x = (x1, …, xn)′, xs = (xn+1, …, xn+m)′, ls = (ln+1, …, ln+m)′ = 0, us = (un+1, …, un+m)′ ∈ 
ℤm, with 

+
, 0 , 0

, .
ij ij

s
i ij j ij jn i

j J a j J a

u b a l a u i I
∈ > ∈ <

= − − ∈   

We give the following definitions: 

• A vector x verifying the constraints Ax ≤ b, l ≤ x ≤ u, x ∈ ℤn, is a feasible solution of 
the problem (1). The feasible solutions set is given by: 

{ }: , .Z nS x Ax b l x u= ∈ ≤ ≤ ≤  

Similarly, we define by 

( ) ( ){ }+, , : + , , ,s n m s s s s
j s mS y x x x j J Ax I x b l x u l x u= = = ∈ ∈ = ≤ ≤ ≤ ≤  

The feasible solutions set of the relaxed problem (2). 

• Let y0 = (x0, xs0) be an optimal solution for the problem (2). A feasible solution  
y = (x, xs) is said to be -optimal or suboptimal if: 

( ) ( )0 0 ,z y z y c x c x′ ′− = − ≤    
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where  is a non-negative number, chosen as an accuracy. 

Let JB ⊂ Js be a subset of indices such that Js = JB È JN, JB Ç JN = Æ, |JB| = m. In 
virtue of this partition, we can write and partition vectors and matrices as follows: 

( ) ( )

( ) ( ) ( ) ( )

, , , , ;

, , , , , , ,

B
B j B N j N

N

Bs
j s B j B N j N

N

y
y y x j J y x j J

y
c

k c c c j J c c j J c c j J
c

 
= = ∈ = ∈ 
 

 
= = ∈ = = ∈ = ∈ 

 

 

where cs = (cj, j = n + 1, ···, n + m) = 0 ∈ ℤm; 

( ) ( ) ( ) ( ) ( ), , , , , .m s B N B j B N j NA I A I J A A A a j J A a j J= = = ∈ = ∈  

The subset JB is called a support if detAB ≠ 0. The couple {y, JB} formed from the feasible 
solution y and the support JB is called a SFS. An SFS {y, JB} is non-degenerate if lj < xj < 
uj, ∀j ∈ JB. It is called basic if xj = lj ∨ uj, ∀j ∈ JN. 

3 Solution of the relaxed problem by the adaptive support method 

3.1 Resolution algorithm FOR the relaxed problem 

Let {y, JB} be a SFS of the problem (2) and let’s consider any other feasible solution 
+Δ , ( , ).sy y y y x x= =  The increment of the objective function is (Bibi and Bentobache, 

2015): 

Δ ( ) ( ) Δ ,N Nz z y z y c x c x E y′ ′ ′= − = − = −  

where 

( ) ( ), , ,B N m j j j sE E E π A I k E π a c j J′ ′ ′ ′ ′ ′= = − ⇔ = − ∈  (3) 

With 1, 0 and .B B N N NBπ c A E E π A c−′ ′ ′ ′ ′ ′= = = −  The vector E is called a reduced costs 
vector. 

Then we have the following optimality criterion: 

Theorem 1: Gabasov (1993) 

Let {y, JB} be a SFS for the problem (2). Then the relations: 

0, for ,
0, for ,
0, for , ,

j j j

j j j

j j j j N

E x l
E x u
E l x u j J

≥ =
 ≤ =
 = < < ∈

 (4) 

are sufficient, and in the case of non-degeneracy also necessary, for the optimality of the 
SFS {y, JB}. 

Remark 1: If the SFS {y, JB} is basic, then the optimal relations (4) take the form: 
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0, for ,
0, for , .

j j j

j j j N

E x l
E x u j J

≥ =
 ≤ = ∈

 

The number 

( ) ( ) ( )
0 0

, +
j N j N

B j j j j j j
E j J E j J

y J E x l E x u
> ∈ < ∈

= − − β  (5) 

Is called a suboptimality estimate of the SFS {y, JB} and we have always the inequality: 
z(y0) – z(y) ≤ β(y, JB). So, if β(y, JB) ≤ , then y is an -optimal solution for the  
problem (2). 

Let {y, JB} be an initial SFS of the problem (2) and β(y, JB) > . An iteration of the 
adaptive method algorithm (Gabasov, 1993; Bibi and Bentobache, 2015) consists in 
getting a new SFS { , }By J  such that ( ) ( ) and ( , ) ( , ).B Bz y z y y J y J≥ ≤β β  For this 
purpose, we calculate an improvement direction d ∈ ℝn+m and a step θ0 ≥ 0 verifying 

0+ .y y θ d=  Thus, we set: 

( ) 1

, if 0,
, if 0,

0, if 0, ,
.

j j j j

j j j j

j j N

B B N NB

d l x E
d u x E
d E j J
d d d A A d−

= − >
 = − <
 = = ∈
 = = −

 (6) 

{ }1 1
0 min 1, , with min , where

, if 0,

, if 0,

, if 0.

B
j j j

j J

j j
j

j

j j
j j

j

j

θ θ θ θ

u x
d

d
l x

θ d
d

d

∈
 = =

 − >    − = < 
 
 ∞ =

 (7) 

Two cases can arise: 

1 θ0 = 1: The feasible solution +y y d=  is optimal and the resolution process is 
stopped. 

2 1
0 1:jθ θ= <  in this case, the suboptimality estimate of the new feasible solution 

{ , }By J  is equal to: 

( ) ( ) ( )0, 1 , .B By J θ y J= −β β  

If ( , ) ,By J ≤β   the new solution is then -optimal and the process is stopped. Otherwise, 
we will change the support JB. For this, we construct the pseudo-solution κ = y + d and 
we set 1 10 .j jκ x= −α  The dual direction t is constructed as follows: 

1 0 1
1

, 0, , ,
.

j j B

N B NB

t sign t j j j J
t t A A−

= = ≠ ∈
 ′ ′=

α
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We compute the dual step 0
0 min ,

N
j j

j J
σ σ σ

∈
= =  where 

, if 0;

0, if 0, 0;
, Otherwise

j
j j

j

j j j

E
E t

t
σ E t

− <

= = <
∞

 

We set 1 0( \ ) .B BJ J j j= È  The suboptimality estimate value becomes: 

( ) ( ) ( )0 0
0, 1 , .B By J θ y J σ= − −β β α  

If ( , ) ,By J >β   then we start a new iteration by setting : , and : .B By y J J= =  

3.2 Getting an optimal basic solution from an optimal support solution 

Let {y0 = (x0, xs0), JB} be an optimal support solution of the problem (2), satisfying the 
optimality sufficient conditions (4). If {y0, JB} is not basic, then it is not unique. During 
the cut construction, a special case can arise, where we must have an optimal basic 
solution. For this, according to the signs of the reduced costs vector EN, we define the 
following sets of indices: 

{ } { }
{ }

0 0

0

: 0 and , : 0 and ,

: 0 and , .

l u
N j j N j jj jN N

lu l u lu
N j j j NjN N N N

J j J E x l J j J E x u

J j J E l x u J J J J

= ∈ ≥ = = ∈ ≤ =

= ∈ = < < = È È
 

We construct another feasible solution y  such that 0 0( ) ( ), with +z y z y y y θ d= =  and 

0 0 0

0 0 0

0, if ,
, if and 0 ,
, if and 0 ,

l u
N N
lu

j j j jj j jN
lu

j j jj j jN

j J J
d l x j J x l u x

u x j J u x x l

∈
= − ∈ < − ≤ −
 − ∈ < − < −

È
 

and 1 1 .
N

B N N j jB B j J
d A A d A a d− −

∈
= − = −   

The step θ0 is computed according to formula (7). Two cases can arise: 

• if θ0 = 1: 0 + .y y d=  In this case, we have: , ,j j j Nx l u j J= ∨ ∈  and 

( ) ( )0 0 0 0.
luN N

j j j j
j J j J

z y z y θ E d θ E d
∈ ∈

− = − = − =   

Therefore, y  is another optimal basic solution. 

• 1
0 0

1 1: + ,j jθ θ y y θ d= < =  with 1 1 1 .j j jx l u= ∨  

In this case, we repeat the process with the SFS { , },By J  such that 

1 0{ \ } { }B BJ J j j= È  and 0 1{ \ } { },N NJ J j j= È  where j0 is the index given by the 
dual iteration. 
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So the new feasible solution y  will have a new non-basic critical component at each 
iteration. This process provides an optimal basic solution after |JN| iterations at most. 

4 Rounding heuristic 

4.1 Rounding procedure 

Let y0 = (x0, xs0) be an optimal solution for the problem (2), where x0 is not integer, and 
xs0 = b – Ax0. 

Then we set 
0 0 + , with 0 1, {1, 2, ..., },j jj jx x j J n= ≤ < ∈ =   α α  

where 0
jx    is the integer part and { }0

j jx=α  the fractional part. 
In order to obtain an integer feasible solution for the problem (1), we propose a well 

appropriate rounding process described as follows: 
We set M = z(x0) and ˆ( ),m z x=  where ˆ ˆ ˆ( , )sy x x=  verifies ˆ ˆ( ) min ( ) ( ).

y S
z y z x z x

∈
= =  

We define the following sets of indices: 

{ } { }: 0 and : 0 .c j c jJ j J c J j J c+ −= ∈ ≥ = ∈ <  

1 Rounding of x0 

(A1) Rounding x1 according to the variable. We set: 

( )
1

1 1 1

0

1, if 0 ,
2, ,

1+1, if 1.
2

jj

j j

jj

x
x x j J x

x

 ≤ ≤= ∈ = 
 ≤ <


α

α
 

if x1 is not feasible for the problem (1), we round according to the function z. 

(A2) Rounding x2 according to the function z. In this case, we set: 

0

2
0

, if ( ) 0,

+ , if ( ) ( ) 0,

j jj J

jj J

x z c
x

x e z c z
∈

∈

 = ≥
= 

= ≤ <




α α

ε α
 

where e = (1, 1, …, 1′∈ ℝn and α = (αj, j ∈ J): 

Else, if this round is not feasible, we set: 

( )
0

2 2 2
0

, ,
, ,

+1, .
cj

j j
cj

x j J
x x j J x

x j J

+

−

 ∈= ∈ = 
∈

 

If x2 is not feasible, we round according to the middle xm. 
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2 (A3) Rounding of the middle xm. We set 01 ˆ( + )
2

mx x x=  and we round xm to x3 as 

follows: 

( )3 3 3
+1, ,

, ,
, .

m
cj

j j m
cj

x j J
x x j J x

x j J

+

−

 ∈= ∈ = 
∈

 

If this round is not feasible, we set 

3 +1, if ,
, if .

m
c c

m
c c

x J Jx
x J J

+ −

+ −

 ≥
= 

<
 

If this last round is not feasible, we set 

Remark 2: The round x3 has a greater probability to be feasible, because xm is situated in 
the middle of the polytope S or in the middle of one of its faces. 

Remark 3: Although at the end of the rounding step, we do not get any feasible integer 
solution, we continue the cutting plane algorithm until obtaining a satisfactory feasible 
rounded solution or an integer optimal solution. 

Remark 4: If a round xa verifies z(xa) > z(x0), then xa is not feasible. 

Lemma 2: In the case of the round x2 according to the function z, we have always z(x2) ≤ 
z(x0). 

Indeed, if z(α) ≥ 0, we have x2 = [x0] and 

( ) ( ) ( )0 0 0 2 2+ + ( ) .j j j jj j
j J j J j J

z x c x c x c z x z z x
∈ ∈ ∈

= = = ≥     α α  

If z(e) ≤ z(α) < 0, we have x2 = [x0] + e. So 

( ) ( )0 0 0 0 2+ + + ( ) .j j j j j jj j j
j J j J j J j J j J

z x c x c c x c c x z e z x
∈ ∈ ∈ ∈ ∈

= ≥ = =              α  

In the second case, we have 

( ) ( ) ( )0 0 0 0 0 2+ + +1 .
c c c c

j j j jj j j j
j J j J j J j J

z x c x c x c x c x z x
+ − + −∈ ∈ ∈ ∈

= ≥ =          □ 

We illustrate the rounding process on a typical ILP example, where all the neighbours 
rounds of the optimal solution are not feasible, but the middle is. 

Example 4.1: Consider the following linear integer programming problem: 

1 2

1 2

1 2

max + ,
14 + 9 51,

6 + 3 1,
0, , 1, 2.j j

z x x
x x
x x

x x integer j

=
 ≤
 − ≤
 ≥ =

 (8) 

The optimal solution after solving the relaxed problem is: 
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( )0 03 10 29, , with .
2 3 6

x z x
′ = = 

 
 

Since this solution x0 is not integer, then we apply the rounding process for x0. 

• The round x1 = (1, 3) according to the variable is not feasible. 

• The round according to the function z is x2 = (1, 3) = x1, which is also not feasible. 

The other possible neighbours rounds xa of the optimal solution x0 are: (2, 3), (1, 4) and 
(2, 4), which are not feasible, since z(xa) > z(x0). Therefore, we go to the middle round xm: 

xm = ( )01 ˆ+ ,
2

x x  where x̂  = (0, 0), 3 5, .
4 3

mx  =  
 

 The obtained round is x3 = (1, 2) which 

is an integer feasible solution for the problem (8), close enough to the integer optimal 
solution xe = (2, 2), with z(xe) = 4 and z(x3) = 3. 

4.2 Notion of β-optimality 

The concept of β-optimality allows to indicate the quality of an approximate integer 
solution. Let’s x0 be an optimal solution for the problem (2) and x0e an optimal solution 
for the problem (1). Then the β-optimality estimate is defined as follows: 

( ) ( ) ( )0 0
0 ,

a
a z x z xx

M m
−=
−

β  (9) 

where x0a is an integer feasible solution, obtained eventually after the rounding process of 
x0, M and m being defined above. 

As the difference between z(x0) and z(x0e) cannot be infinitely small, we reduce this 
difference by dividing on the quantity M – m. Hence, we will have: 

( ) ( ) ( ) ( ) ( )
0 0 0 0

00 1.
e a a

az x z x z x z x x
M m M m

− −≤ ≤ = ≤
− −

β  

Thus, the round x0a is called β-optimal if β(x0a) ≤ β, where the non-negative real β < 1 is 
chosen as an accuracy. 

 

5 ILP resolution algorithm 

The purpose of this algorithm is to construct an optimal or an approximate solution for 
the problem (1). The principle is similar to that of cutting planes algorithms, but in this 
work we associate in addition a heuristic that tries to get with a high probability an 
integer feasible solution, for which the β-optimality estimate is evaluated in order to 
quantify its quality. Thus, we first solve the relaxed problem (2) by the adaptive method 
(Gabasov et al., 1995), obtaining therefore an optimal support solution {y0, JB}, with  
y0 = (x0, xs0). If the vector x0 contains only integer components, then x0 is an optimal 
solution of the problem (1) and the resolution process is stopped. Otherwise, we apply the 
rounding process described above and calculate the β-optimality estimate, if the round 
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x0a is feasible. If β(x0a) ≤ β, where β is chosen in advance as an accuracy, then the 
algorithm is stopped. Otherwise, we must generate a valid cut. To do this, according to 
(3) we define the following sets of indices: 

{ } { }
{ }
{ } { }

0 +

+ 0 0 0 0 0 0

: 0 , : 0 ,

: 0 ,

; , and ; .

N j N N jN

N jN

j j j jj j j jN N

J j J E J j J E

J j J E J J

J j J x l u x J j J u x x l

+ −

−

−

= ∈ > = ∈ <

= ∈ = =

= ∈ − ≤ − = ∈ − < −

È  

Then we construct the functions: 

{ }( )

{ }( )

( ) +

+ , ,

NN N

N

i i ij j ij j ij j j
j J J j J J j J J

ij j j B
j J J

Z y b x l x u x x l

x x u i J

+ + − − + +

− −

∈ ∈ ∈

∈

 = − − −
 
 

+ − ∈

  




È È È

È

 (10) 

where 1
Bb A b−=  and X = (xij, i ∈ JB, j ∈ JN) = 1 .NBA A−  

Proposition 3: Gabasov and Kirillova (1980) 

For all integer SFS {ye, JB} of the problem (2), we have Zi(ye) ≥ 0, ∀i ∈ JB. In addition, 
Zi(ye) is an integer number for all i ∈ JB. 

Proposition 4: Let {y0, JB} be an optimal SFS of the problem (2). If there is an index i1 ∈ 
JB such that 1

0( ) 0,iZ y <  then the inequality gives a valid cut. 

1
+( ) 0, ,n m

iZ y y≥ ∈  

Proof 1: Evident, because in virtue of Proposition 3, all integer feasible solutions ye for 
the problem (2) verify Zi(ye) ≥ 0, ∀i ∈ JB, in particular 1 ( ) 0.e

iZ y ≥  □ 

Proposition 5: When the support optimal solution {y0, JB} is basic and not integer, then  
∃ i1 ∈ JB such that 1

0( ) 0.iZ y <  

Proof 2: Let {y0, JB} be an optimal basic feasible solution for the problem (2). Then in 
this case, we have: 

+ +
0 , ,

, .
j N

j
j N

l j J J
x

u j J J− −

∈
=  ∈

È
È

 

Let i1 ∈ JB be an index such that the component 
1
0
ix  is not integer, with 

{ } { }1 1 1 1
0 0 0 0+ , 0 1.i i i ix x x x= < <    Then the expression of 1

0( )iZ y  takes the following form: 
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( ) { }( )

{ }( )

1 1 1 1 1

1

1 1 1

0 +

+ ,

.

NN N

N

NN

i i i j j i j j i j j j
j J J j J J j J J

i j j j
j J J

i i j j i j j
j J J j J J

Z y b x l x u x l l

x u u

b x l x u

+ + − − + +

− −

+ + − −

∈ ∈ ∈

∈

∈ ∈

 = − − −
 
 

+ − −

 = − − −
 
 

  



 





È È È

È

È È

 

On other hand, we have: 

( ) 0 0 0

0 1 1 0 0 0 0

+ ,

+ .
m B NB N

NB B B N N B N

A In y b A y A y b

so y A b A A y b Xy b y Xy− −

= ⇔ =

= − = −  −   

Hence, the component 1ib  is equal to: 

1 1 11
+ + -

0 + + ,
NN

i i j i ji
j J J j J J

b x x l x u
−∈ ∈

=  
È È

 

From where we get 

( ) { }1 1
0 0 0.i iZ y x= = − <  □ 

Corrolary 6: Let {y0, JB} be an optimal SFS for the problem (2). If y0 is not integer and 
such that Zi(y0) ≥ 0, ∀i ∈ JB, then y0 is necessarily a non-basic optimal feasible solution. 

Proof 3: Evident, according to the Proposition 5. 

Remark 5: In the case of the hypothesis of Corollary 6, i.e., Zi(y0) ≥ 0, ∀i ∈ JB, we use the 
procedure of the Subsection 3.2 in order to obtain an optimal basic feasible solution. 

Proposition 7: Let {y0 = (x0, xs0), 0}BJ  be an optimal support solution for the problem (2), 
where x0 is not integer and there exists 0

1 Bi J∈  such that 1
0( ) 0.iZ y <  Let y* = (x*, xs*) be 

a feasible solution for the augmented problem (2) with the added cut 1 ( ) 0.iZ y ≥  Then the 
pair ( , ),By J  where 

( ) ( )( )0 0, 0 + , 0 and { + +1},B By y y y y J J n m∗ ∗= = − =l È  

is a SFS for the augmented problem (2), where the parameter l is such that 1 ( ) 0iZ y =  

and 0 ≤ l < 1. 

Proof 4: The vector y  verifies the constraint 1 ( ) 0,iZ y ≥  since by construction the step l 

is such that 1 ( ) 0.iZ y =  Let us show that the parameter l is such that 0 ≤ l < 1. Indeed, 
we have: 
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( ) { } ( )( )

{ } ( )( )

( ) ( ) { }( ) { }( )

1 1 1 1 1

1

1 1 1 1

0

0

0 0

+ +

+ 0,

+ 0.

NN N

N

NN

i i i j j i j j i j j j jj
j J J j J J j J J

i j j j jj
j J J

i i i j j i j jj j
j J J j J J

Z y b x l x u x x x x l

x x x x u

Z y Z y x x x x x x

+ + − − + +

− −

+ + − −

∗ ∗

∈ ∈ ∈

∗ ∗

∈

∗ ∗ ∗

∈ ∈

 = − − − −
 
 

+ − − − =

 = − − − − =
 
 

  



 

 l

-l

l

È È È

È

È È

 (11) 

On the other hand, we use the definition of the function 1iZ  and obtain: 

( ) ( ) { }( ) { }( )

{ }( ) { }( )

{ }( ) { }( )

1 1 1 1

1 1

1 1
+

0 0 0

0 0

+

+ +

+

.

NN

NN

NN

i i i j j i j jj j
j J J j J J

i j j j i j j j
j J J j J J

i j j i j jj j
j J J j J J

Z y Z y x x l x x u

x x l x x u

x x x x x x

+ + − −

+ + − −

+ − −

∗

∈ ∈

∗ ∗

∈ ∈

∗ ∗

∈ ∈

− = − − −

− − − − −

= − − −

 

 

 -

È È

È È

È

 

From (11), finally we get: 

( )
( ) ( )

1

1 1

*

* 0
.i

i i

Z y
Z y Z y

=
−

l  

Since 1 1
0( ) 0 and ( ) 0,i iZ y Z y∗ ≥ <  then l satisfies the condition 0 ≤ l < 1. 

In addition, y  also belongs to S. Indeed, from the convexity of S, it follows that: 

0 0, and [0, 1] + (1 ) .y S y S y y y S∗ ∗∈ ∈ ∈  = − ∈l l l  

Furthermore, BJ  is well a support, since 

( ) ( ) ( )0 0det { +1}, det { +1}, { + +1} det , 0.B B BA I m J A I m J n m A I J= = − ≠È È È  

Therefore, { , }By J  is a SFS for the augmented problem (2) including the constraints: 

1 + +1 + +1 + +1 + +1( ) 0 and 0 .i n m n m n m n mZ y x l x u− = = ≤ ≤  □ 

Algorithm 1 The general scheme of this algorithm is described as follows: 

Step 1: Set t = 0, It = I = {1, 2, …, m} and t
sJ =  Js = {1, 2,…, n + m}. 

 Let {y = (x, xs), JB} be an initial SFS for the problem (2). Then we construct an optimal 
support solution {yt = (xt, xst), }t

BJ  by the adaptive method. If xt ∈ℤn, stop the algorithm: xt is 
an optimal solution for the problem (1). Otherwise, go to step 2. 

Step 2: Application of the rounding process described in Section 4. Let xta be the resulting 
round. 
 If xta is feasible, we calculate the β-optimality estimate defined as follows: 
 

( ) ( ) ( )
.

t ta
ta z x z xx

M m
− −=

−
β  

  If β(xta) ≤ β stop, xta is β-optimal. 
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  Else Set xt* = xta, go to the step 3. 
 Else We set xt* = xm and go to step 3. 

Step 3: We construct the functions Zi(yt), for all .t
Bi J∈  

 Two cases can occur: 
 1 11 : ( ) 0.t t

iBi J Z y∃ ∈ <  In this case the inequality 

  1 ( ) 0iZ y ≥  (12) 

  gives a valid cut. 
  We solve the following augmented problem, after adding the constraint (12): 
  

1 + + +1

max ,
+ ,
( ) 0,

, .

s

i n m t
t

j j j s

z c x
Ax x b
Z y x
l x u j J

′=
 =
 − =
 ≤ ≤ ∈

 (13) 

  We start with the SFS { , },t t
By J  where 

  ( )( ) ( )+ , 0 , 0 1, , , ,t t t t t t st st ty y y y y x x x b Ax∗ ∗ ∗ ∗ ∗ ∗ ∗= − ≤ ≤ = = −l l  

  and l will be found from the equation 1 ( ) 0.t
iZ y =  

  We take the support { + + +1}.B BJ J n m t+ += È  

  We increment t, t = t + 1. 
  We set It = It–1 È{m + t} and 1 { + + }.t t

s sJ J n m t−= È  

  Let { , }t t
By J  be an optimal support solution of (13). Based on the latter, the process is 

repeated like with 1 1{ , }.t t
By J− −  

 2 ( ) 0, :t t
i BZ y i J≥ ∀ ∈  the vector yt is not basic (the optimal solution yt is not unique). In 

this case, using the procedure 3.2, we obtain an optimal basic solution ytB, and construct 
a regular cut as in the case (1). 

Example 5.1: Let’s solve the following ILP problem by the proposed method: 

1 2 3 4

1 2 3

1 2 3 4

2 2 4

max 3 + 5 + 4 + 2 ,
2 + 7 + 3 18,

+ 3 + 2 + 14,
3 + 2 + 2 11,

0 10, , 1, 4.j j

z x x x x
x x x

x x x x
x x x

x x j

=
 ≤ ≤
 ≤

 ≤ ≤ ∈ = 

 (14) 

The associated relaxed program written in standard form is: 
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1 2 3 4

1 2 3 5

1 2 3 4 6

1 2 4 7

5 6 7

max 3 + 5 + 4 + 2 ,
2 + 7 + 3 + 18,

+ 3 + 2 + + 14,
3 + 2 + 2 + 11,

0 10, 1, 4.
0 18, 0 14, 0 11.

j

z x x x x
x x x x

x x x x x
x x x x

x j
x x x

=
 =
 =
 =
 ≤ ≤ =


≤ ≤ ≤ ≤ ≤ ≤

 (15) 

Step 1 Solution of the relaxed problem by the adaptive method. 

Let y = (x, xs) = (0, 0, 0, 0, 18, 14, 11)′ be an initial feasible solution of (15), 
with z(x) = 0. We take the support JB = {1, 2, 3} and construct the optimal 
support solution: 

( )0 0 0
0

21 59 29, 0, , , 0, 0, 0 , {1, 4, 3},
11 11 11

s
By x x J

′ = = = 
 

 

M = z(y0) = z(x0) = 329 29,909.
11

  

In addition, we have ˆ ˆ ˆ ˆ( , ) (0, 0, 0, 0, 18, 14, 11) , ( ) 0.sy x x m z y′= = = =  The 

vector 0 21 52 29, 0, ,
11 11 11

x
′ =  

 
 being non-integer, the rounding process is applied 

on x0. The second round according to the function z is then feasible, with  
x0a = (1, 0, 4, 2), xs0a = (4, 3, 4), y0a = (x0a, xs0a), z(x0a) = z(y0a) = 23. The  
β-optimality estimate is: 

( ) ( ) ( )0 0
0 76 0.231.

329

a
a z x z xx

M m
−= =
−

β  

The round x0a is not satisfactory, so we set x0* = x0a, y0* = (x0a, xs0a). 

Step 2 We add to program (15) a cut. 

Iteration 1: The reduced costs vector is: 

( )0 0 0 0 0 0
5 72 6

27 4 16 3, , , , , , , {2, 5, 6, 7}.
11 11 11 11N NE E E E E J

′ ′= = = 
 

 

According to the signs of 0 0, ,j NE j J∈  the set 0
NJ  is partitioned as follows: 

{ }0 0: 0 {2, 5, 6, 7}, Ø.jN N NJ j J E J J J+ + + −= ∈ > = = = =  

We then calculate the value of the functions Zi(y0), 0 :Bi J∈  

( )0
1

10 7 8, , 1.
11 11 11BZ y i

′ = −  = 
 

 

1 1 6 5 2 7( ) ( ) 5 + 4 + 5 + 3 10.iZ y Z y x x x x= = −  
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We solve the augmented program (15), with the added constraint Z1(y) ≥ 0, 
starting by the following initial solution: 

( )( )0 0 0 0
8+ , ,y y y y x∗ ∗= −l  

where l is calculated from the equation 0
1( ) 0.Z y =  So 

033 83 10 176 87 10 50 30and , , , , , , , 0 .
43 43 43 43 43 43 43 43

y
′ = =  

 
l  

With the slack variable x8, the initial SFS 0 0{ , }By J  for the augmented problem 
will be equal to: 

0 083 10 176 87 10 50 30, , , , , , , 0 and {1, 4, 3, 8}.
43 43 43 43 43 43 43 By J

′ = = 
 

 

The optimal SFS of the augmented program is: 

( )1 1 116 7 101, 0, , , 0, 0, , 0 and {1, 4, 3, 7} with 29.
3 3 3 By J z y

′ = = = 
 

 

Iteration 2: The resulting vector 1 16 71, 0, ,
3 3

x
′ =  

 
 being non-integer, we apply 

the rounding process on x1, where the 2nd round according to the function z is 
feasible. We get x1a = (1, 0, 5, 2)′, with z(x1a) = 27. The β-optimality is: 

( )1 22 0.067.
329

ax = =β  

If one considers that the value of the β-optimality is not yet satisfactory, then we 
set x1* = x1a, y1* = (x1a, xs1a); with xs1a = (1, 1, 4, 11), and we add a new cut to the 
last previous program. 

The reduced costs vector is: 

( )1 1 1 1 1
52 6 8, , , {2, 0, 1, 1}.NE E E E E ′= =  

The partition of the set { }+ 1 1: 0 {6, 2, 8},jN NJ j J E= ∈ > =  

{ }1 1 1 1: 0, {5}, Ø.j j Nj j jNJ j J E x l u x J J+ − −= ∈ = − ≤ − = = =  We then calculate 

the values Zi(y1), 1 :Bi J∈  

( )1 1 1 10, , , .
3 3 3BZ y

′ = − − − 
 

 

We’re still in the case (1). The new cut is: Z2(y) ≥ 0, i.e. 

2 5 6 8 92 + + 2 + 1.x x x x x− =  



   

 

   

   
 

   

   

 

   

   84 M.O. Bibi et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

We solve the resulting problem, beginning with the SFS 1 1{ , },By J   
where 1 1 1 1 1 1{9} {1, 4, 3, 7, 9} and ( + ( ), 0)B BJ J y y y y∗ ∗ ′= = = −lÈ  

679 289 43 43 231 473 871, 0, , , , , , , 0 , .
130 130 130 130 65 130 130

 = = 
 

l  

The optimal solution obtained by the proposed method after adding the cut Z2(y) 
≥ 0 is: 

( )2 2(1, 0, 5, 3, 1, 0, 2, 0, 0) , 29.y z y′= =  

This solution is integer, then the process stops. The vector x2 = (1, 0, 5, 3)′ is an 
optimal solution of the problem (14), with z(x2) = 29. 

Remark 6: We have β(x2) = 0, but we could stop at the good approximate solution  

xa1 = (1, 0, 5, 2), with z(xa1) = 27 and 2( ) 0.067.
29

ax = β  In practice, for an 

approximate solution, we can stop the algorithm as soon as (xa) no longer decreases. 

6 Numerical experiments 

In order to test the proposed algorithm and to make sure of its effectiveness, a 
comparative study is made with intlinprog of the MATLAB optimisation toolbox on 
randomly generated medium size test problems. The random numbers are uniformly 
distributed in [–10, 10]. The criterion of the comparison between the two methods is the 
CPU time in seconds and the number ∆F = zr – ze, where zr is the optimal value of z for 
the relaxed problem and ze is the best value for ILP. The obtained results are presented in 
Table 1. 
Table 1 Comparative results 

n m 
Intlinprog  Proposed algorithm 

CPU ∆F CPU ∆F 
5 2 0.3416 0.5000  0.1248 0.3000 

3 0.1201 0.4000  0.1362 0.5000 
10 5 0.1591 3.0067  0.3744 2.0082 

7 0.1529 1.8822  0.0936 1.1021 
15 5 0.1482 2.4389  0.2056 0.6754 

10 0.1232 5.7749  0.2176 3.6771 
20 5 0.1326 0.6500  0.1864 0.8710 

10 0.1388 2.3241  0.2076 3.2091 
15 0.2262 5.3819  0.3572 4.0287 

30 5 0.1248 0.5825  0.1948 1.5033 
10 0.1061 3.1314  0.1494 3.5022 
20 0.1529 6.6476  0.0919 7.1009 
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Table 1 Comparative results (continued) 

n m 
Intlinprog  Proposed algorithm 

CPU ∆F CPU ∆F 
50 10 0.1747 3.1133  0.7800 3.7500 

20 3.3244 6.5694  2.1216 5.2418 
30 57.2446 13.9576  2.1996 12.3343 

80 10 0.1544 0.7626  0.1812 0.8503 
30 10.8280 8.5260  4.3056 7.9000 
50 12.0764 12.8872  6.3492 10.5000 

100 10 1.0049 2.5012  1.0764 2.8012 
50 11.6524 13.7676  7.2849 10.2033 
70 14.6541 15.8753  8.7956 13.6532 

The results show that the proposed algorithm is very competitive with intlinprog and 
presents good performances mainly for problems where m is large enough. 

7 Conclusions 

Unlike linear programming problems, integer programming problems are very difficult to 
solve. In fact, no efficient general algorithm is known for their resolution. The cutting 
planes algorithms give integer feasible solution only at the end of the resolution, whereas 
heuristics try to find integer feasible solution in a reasonable time, but we cannot know 
precisely the quality of these approximate solutions. Here, by combining a cutting plane 
method with a heuristic, we are able to calculate the β-optimality estimate that informs us 
about the quality of the approximate solution. 
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