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Abstract: The epidemic developing rate of the networking technologies has 
resulted in an impressive sizeable scope of the associated computing 
framework. Internet-of-things (IoT) is considered a substitute for acquiring 
high performance by the improved potentialities in task scheduling, resource 
allocations and information exchanges. However, the current IoT is 
experiencing the gridlock of the task scheduling and resource allocation due to 
the higher level of dependency while scheduling and convoluted service 
contributing frameworks. With task scheduling and resource allocation 
considered with salient characteristics of cloud computing (CC) environment, 
this paper proposes a method called two-factor task scheduler and deep 
resource allocator (TFTS-DRA) based on IoT. In this method, each task is 
processed before its actual allocation to the cloud resources by cost and  
time-based divide and conquer task scheduling model. The resources are 
allocated using deep resource allocation model, which considers the auto 
encoder (AE) and fully connected neural network (FCNN) with energy 
consumption and transmission delay of cloud resources as constraints. 
Simulation results show that the proposed TFTS-DRA method performs in an 
extensive manner with higher throughput rate. The numerical results shows that 
proposed deep resource allocator algorithm in an IoT-CC environment, both the 
bandwidth utilisation and energy consumption can be improved. 

Keywords: internet of things; IoT; cloud computing; two factors; task 
scheduler; deep resource allocator; auto encoder; fully connected neural 
network. 
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1 Introduction 

With the developing popularity of the application of cloud computing, the needs for CC 
have also increased in height. Research analysis concentrating on CC has started using it 
due to its better performance along with the lower energy consumption model. Many 
science applications, like the internet of things (IoT), sequencing gene operations and 
prediction for earthquake modelling are becoming in high demand vulnerable to  
high-performance computing and storage in a distributed fashion. Hence, CC can be seen 
as a perspective where a flexible heterogeneous resource pool via network, and users on 
demand rent varied resources according to the needs and requirements. 

Two IoT-aware multi-resource task scheduling algorithm was proposed in Lin et al. 
(2019) to attain both load balancing and minimise the task response time for each IoT 
device. The two tasks scheduling algorithms were resource load balancing and time 
balancing based on heuristics. The main contribution lies in the way the correct virtual 
mappings are being performed between virtual machines. During the pre-processing, two 
phases were included, task ordering by means of priority and task re-ordering according 
to the task category. The urgency was addressed by means of prioritising and segregation 
of task between IoT and common was done by means of categorisation. 

Besides, two strategies, namely, selecting strategy and mapping strategy were also 
included via greedy algorithm. With this, both the energy consumption and IoT average 
task response time were found to be reduced. However, dependent task scheduling was 
not focused and therefore compromising both the bandwidth utilisation and average 
response time. In this work to improve both the bandwidth utilisation and average 
response time, a dependent task scheduling model based on cost and time-based divide 
and conquer task scheduling is designed. Here, by considering both the computation cost 
and communication time while performing divide and conquer while task scheduling, 
optimal task scheduling is said to be achieved. 

A deadline and cost-aware genetic algorithm (DCGA) for scheduling of workflows in 
IoT applications were designed in Ma et al. (2019). With the objective of reducing and 
cut shorting the cost involved, the algorithm concentrated on the trivial aspects of the 
cloud, like, acquisition of resources on-demand, dynamics in a heterogeneous manner, 
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delay incurred during the acquisition and variations of performance involved in the 
virtual machines. 

Besides, heuristic operations were also utilised to allocate different tasks to the 
concerned VMs, therefore contributing to execution time and execution cost. However, 
the throughput was not focused. To address this issue, in this work, a deep resource 
allocator is designed that uses both auto encoder and fully connected neural network to 
achieve better throughput. 

Under the above circumstances, in this paper we propose an integrated task 
scheduling and resource allocation method that not only evaluates the cost and  
time-based task scheduling, but also considers the clock cycle of each cloud computing 
machine during resource allocation. Furthermore, we consider the auto encoder and fully 
connected neural network for IoT applications in a dynamic cloud environment. In 
essence, the main contributions of this paper are as follows: 

• We formulate a joint task scheduling and resource allocation problem in the 
downlink of the cloud computing environment with cost and time constraints. 
Therefore, we provide a divide and conquer framework to decompose the complex 
IoT device scheduling into manageable and recursively breakup of tasks to optimise 
the task to be scheduled for IoT applications. 

• We formulate a two-side deep resource allocator via auto encoder and fully 
connected neural network to initiate the scheduled task association followed by task 
scheduling between the cloud computing infrastructures and the IoT devices. 
Furthermore, the two-factor divide and conquer-based analytical framework 
significantly enhances the performance of the task response time. 

• We perform extensive numerical analysis to evaluate the performance of the 
proposed approach. The results show that the two-factor task scheduler and deep 
resource allocator (TFTS-DRA) based on IoT for joint task scheduling and resource 
allocation achieves higher utility gain for the users. In addition, the average task 
response time outperforms the conventional resource allocation for IoT-based cloud 
computing. 

The remainder of the paper is organised as follows. In Section 2, an extensive literature 
based on the current task scheduling and resource allocation for IoT-based applications in 
cloud environment is presented. In Section 3, the system model and the proposed method 
with neat block diagram and algorithm is presented. In Section 4, numerical analysis is 
presented to validate the performance and efficiency of the proposed method. Finally, in 
Section 5 the paper is concluded with concluding remarks. 

2 Related works 

In recent years, to ensure quality of service (QoS) to internet of things (IoT), the cloud 
computing environment has transferred toward the edge pattern. A joint user association 
and resource allocation framework was designed in Abedin et al. (2019) with the aid of 
analytic hierarchy process (AHP), therefore ensuring stability of user allocation and 
higher utility gain in terms of resource allocation. A specific fog computing network was 
proposed in Zhang et al. (2017) to achieve optimal and stable performance via 
Stackelberg game. However, two important factors, like, energy consumption and 
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application requests completion time were not analysed. To focus on this aspect, energy 
and time efficient computation offloading and resource allocation (ETCORA) algorithm 
was presented in Sun et al. (2019). 

Security aspects were included in Ben Daoud et al. (2019) by means of distributed 
access control mechanism. With this high focus was made on privacy and security 
aspects along with the minimisation of administration complexity. However, with 
massive number of applications, data processing has to be performed between IoT 
devices in an efficient manner. Therefore, QoS was focused in Reddy and Krishna (2020) 
by means of optimised fuzzy scheduling approach. With this, makespan of time was 
reduced along with the improvement in QoS. 

As far as disaster management is concerned, resource allocation is said to be one of 
the most crucial one to be addressed. A resource allocation algorithm was presented in 
Choksi and Zaver (2019) using multi-objective mechanism dealing with both under and 
over demand resource utilisation. Besides, a priority-based scheduling technique was also 
applied for dense network. A distributed resource allocation for IoT using generalised 
Nash equilibrium (GNE) was proposed in Abuzainab et al. (2017) that not only decreased 
the total energy consumption but also satisfied QoS constraints in an effective manner. A 
resource trading mechanism utilising iterative double sided auction scheme was presented 
in Li et al. (2017). 

There have been several research articles combining both the cloud and sensors. 
However, combining both sensors and applications at the application layer are found to 
be new in number. The objective of the work done in Bose et al. (2019) was to present a 
sensor-cloud architecture that created virtual sensors to facilitate both computing and 
resource capabilities. A collaborative between fog and cloud was performed in Alsaffar  
et al. (2016) to improve resource allocation in an efficient manner and ensuring optimised 
big data distribution. Virtual experiments were conducted in Al-Zoubi and Wainer (2019) 
besides real experiments separately to select best discovered resource servers. 

A student project allocation game was designed in Gu et al. (2018) for the postulated 
joint resource allocation problem that in turn improved user satisfaction. However, the 
reliability was not addressed. To focus on this aspect, the power of machine learning was 
combined with optimisation mechanism in Liao et al. (2019) that contributed network 
throughput. QoS for smart home healthcare applications was proposed in Hassan et al. 
(2017) using agent-based modelling (ABM) for ensuring optimal resource allocation. A 
comprehensive survey to enhance the IoT network performance was provided in Yu et al. 
(2018). A summary of IoT research related to smart technology, data mining, cellular 
communication was investigated in Ud Din et al. (2019). 

However, due to the mismatch in service quality observed in networking and 
environment providing complicated services, the quality of experience were 
compromised. To address this issue, two reinforcement learning-based algorithms were 
utilised in Gaia and Qiub (2018) to improve the same. A game strategy that included 
profit to the providers and enforcing penalty cost to offenders were proposed in Choi and 
Lim (2016) therefore, concentrating on the success rate of job completion to a greater 
extent. 

A cooperative resource scheduling was carried out in Al-Turjman et al. (2018) for 
energy-constrained application with high reliability performance. The designed process 
improved the quality of service with higher throughput and minimal delay. Genetic 
algorithm (GA) and ant colony optimisation (ACO) termed GAACO algorithm was 
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introduced in Basu et al. (2018) to choose the best combination of tasks at every stage. 
GAACO algorithm guaranteed the suitable convergence and optimality. 

A scheduling algorithm was introduced in Preethi and Jayavel (2018) to assign the 
static tasks with respect to resource availability efficiently. The designed algorithm 
managed the situation efficiently through inserting the jobs under different weightage 
queues. A new technique was designed in The et al. (2019) to optimise the task 
scheduling issue for bag-of-tasks applications in cloud with minimal execution time and 
operating cost. 

As discussed in the literature survey, a number of materials and methods have been 
presented for scheduling tasks and using the optimal resources. With the availability of 
constrained resources and large number of devices to be allocated for IoT-based 
applications, the optimal resource allocation is very much necessary. In this context, there 
necessitates a method that considers both tasks and performs the allocation of resources 
by considering several objectives and benchmarks. There are a number of issues like, 
independent and dependent task scheduling, minimising the task response time, and 
accomplishing all IoT tasks with minimum cost. In this work, these issues are handled, 
which differentiates our proposed method from other methods reported in the literature. 
In this paper, factor task scheduler and deep resource allocator (TFTS-DRA) based on 
IoT for cloud computing environment is proposed. The proposed method is evaluated 
based on the average computation cost and average communication time. Overall, using 
our proposed method, the performance of the system is improved in terms of the number 
of parameters, namely, bandwidth utilisation, task response time and throughput rate. 

3 Two-factor task scheduler and deep resource allocator method 

In this section, a method called, two factor task scheduler and deep resource allocator 
(TFTS-DRA) based on IoT for cloud computing environment with the objective of 
improving the throughput with minimum bandwidth and task response time is presented. 
The proposed method is split into two stages. They are task scheduling and resource 
allocation. In real time situation, different types and size of tasks arrive at the cloud 
computing stations. The proposed method obtains the requests from several IoT devices 
as input. To manage the tasks that enter into the cloud computing environment, a cost and 
time-based divide and conquer task scheduling model is first designed. Next, in the 
second stage, the proposed method also addresses the resource allocation by the cloud 
server via deep resource allocation model. The elaborate description of the TFTS-DRA 
method is given below. 

3.1 System model 

Let us consider a network consisting of a set of IoT devices ‘D = D1, D2, …, Dn’, such as 
smart phones, cameras for surveillance, vehicles, fire alarming devices and so on. These 
IoT devices or IoT users may discharge certain type of storage tasks to the cloud service 
providers (CSPs), that are represented as ‘CSP = CSP1, CSP2, …, CSPn’. These ‘CSPs’ 
can meet several IoT devices or users with distinct computing requirements both in terms 
of data size ‘Datasize’ and service delay ‘Sdelay’ respectively. The overall network topology 
is illustrated in Figure 1. 
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Figure 1 Overall network topology (see online version for colours) 

 

To be specific, certain sensitive IoT devices like, fire alarming devices are frequently 
more delay sensitive. On the other hand, the IoT devices like smart phones are frequently 
more adaptable concerning the service delay essentials. Let us consider the fire alarm 
system as a real-time case scenario. Fire department or fire brigade (i.e., cloud server) is a 
public organisation that provides the predominantly emergency fire fighting and rescue 
services for particular geographic area (i.e., municipality, county, or fire protection 
district). Alarms are considered as the first line of defence in event of fire occurrence and 
act as early warning sign giving the chance to escape from any fire-related danger. Each 
building/establishment in geographic area acts as an IoT network. A fire department 
includes one or more fire stations (i.e., cloud service provider) within boundaries and 
staffed by career firefighters, volunteer firefighters, or combination. When an alarm 
warning sign is received in fire department, task scheduler schedules the nearby fire 
stations for the preventing from fire accidents. By this way, we tell that IoT devices are 
not delay sensitive, the computing are sent to the cloud and for those IoT devices with 
precise delay essentials, the requirements, the Task Scheduler ‘TS = TS1, TS2, …, TSn’ 
will assign one of the ‘CSPs’ to discharge the computation task. However, the ‘CSPs’ 
that are adjacent to the IoT devices classically result in smaller delay. But, the topological 
factor is not the only element that influences the entire service delay. 

The service delay comprises of three time periods, which are transmission time, CPU 
processing time and the reception time. The transmission time and reception time are 
defined as the time utilised for sending data to task schedulers ‘TS’ and the time utilised 
for obtaining the processed results, depending on the data size. The CPU processing time 
refers to the CPU rate of each ‘TS’. Thus for any cloud service provider ‘CSP’, while 
selecting the task scheduler from the set 1 2‘ { , , , }’j j jj

iTS ts ts ts=    for each IoT device or 
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user will cooperatively assign its bandwidth 1 2‘ , , , ’j j jj
mBW bw bw bw=   and CPU clock 

speed 1 2‘ , , , ’j j jj
nCPU cpu cpu cpu=   respectively. Figure 2 shows the system model. 

Figure 2 Proposed system model 

 

From the IoT devices’ or users’ outlook, who have delay sensitive data to be processed, 
are sent to the cloud service provider to content for finer resources (both bandwidth and 
CPU clock speed). In addition, IoT devices’ or users’ will take the data sizes into 
consideration. This is due to the reason that more data to be processed necessitates 
extensive transmission time and also extensive CPU processing time. 

Let us further assume, the cooperative bandwidth and CPU clock cycle to be  
treated as the scaling between the IoT user or device sets ‘D’ and the (cooperative 
bandwidth and CPU clock cycle) resource duality sets ‘ {( , )| ,j j jj j

m n mRD bw cpu bw BW= ∈  

}’j j
ncpu CPU∈  possessed by each cloud service provider. Then, the scaling correlation 

‘SC’ is mathematically derived as given below: 

1, if is discharged toij
mn iSC d TS=  (1) 

0, if is not discharged toij
mn iSC d TS=  (2) 

With the purpose of optimising the integrated resource allocation, both the benefit of IoT 
devices’ ‘D’ and the cloud service providers ‘CSPs’ are considered in this work that are 
analysed in the forthcoming sections. 
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3.2 Cost and time-based divide and conquer task scheduling model 

In this section, a cost and time-based divide and conquer task scheduling model is 
designed with the objective of arranging the incoming requests or tasks in an optimal 
manner by considering the dependent tasks also during scheduling. Let ‘D = D1, D2, …, 
Dn’ represent a set of IoT devices on the IoT layer connected to the task scheduler ‘TS = 
TS1, TS2, …, TSn’. Besides, a duplex communication model has been utilised in our work 
to ensure task flow, data transmission and data reception in a parallel fashion. 

The input of the heterogeneous IoT task scheduling model includes a schedule of 
finite directed graph with task scheduler and IoT devices. The output is a schedule 
constituting the allocation of incoming requests or tasks in a certain manner so that the 
resources available in hand are said to be utilised optimally. On the other hand, the task 
scheduling comprises of each task in each application being allocated with Task 
establishment time ‘TET(Di)’ and task finishing time ‘TFT(Di)’ respectively. Figure 3 
shows the block diagram of cost and time-based divide and conquer task scheduling 
model. 

Figure 3 Block diagram of cost and time-based divide and conquer task scheduling model  
(see online version for colours) 

 

As illustrated in Figure 3, the implementation of cost and time-based divide and conquer 
task scheduling model is given below. The tasks to be scheduled are recursively break 
down into two or more tasks and this process is repeated until the tasks are said to be 
scheduled in a direct pattern. With the arrival of ‘n’ number of tasks, the tasks are broke 
down based on the average computation cost and average communication time and 
accordingly, the process of scheduling is performed. 

To start with the average computation cost ‘ACC’ and average communication time 
‘ACT’ required for each IoT device ‘Di’ that has placed its request as input to the task 
scheduler ‘TS’ is formulated and is mathematically expressed as given below: 

( )
1

n i
i i i i

CPUACC t D
R

i
=

= =  (3) 

From equation (3), the average computation cost ‘ACC’ for each task ‘ti’ to 
corresponding device ‘Di’ is measured by means of the CPU clock cycle ‘CPUi’ and 
processing rate ‘Ri’ respectively. 
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( )
1

n ij
i ij i i

DM
ACT t D

BW
i

=
→ =  (4) 

Besides, the average communication time ‘ACT’ for each task ‘ti’ is measured via data 
migration between device ‘Di’ and ‘Dj’ and the bandwidth ‘BWi’ respectively. In order to 
schedule a task for each IoT device on a processor by the task scheduler, tasks have to be 
accommodated on idle time slots (ITS). For that purpose, in this work, the task 
establishment time ‘TET’ and task finishing time ‘TFT’ are defined. Here ‘TET(ti, Pn)’ 
and ‘TFT(ti, Pn)’ represents the task establishment time and task finishing time of task ‘ti’ 
for device ‘Di’ on processor ‘Pn’ respectively. They are mathematically formulated as 
given below: 

( ) ( ) ( ) ( )[ ]{ }, ,i n n i iTET t P MAX Time P ACC t ACT t= +  (5) 

( ) ( ) ( ) ( )( ), , ,i n i n i n iTFT t P TET t P Time t P ArrivalTime Prec t= + +  (6) 

From equation (5), the task establishment time ‘TET’ is obtained based on the execution 
time on processor ‘Pn’ potential of scheduling task ‘ti’, average computation cost ‘ACC’, 
average communication time ‘ACT’ and the arrival time of the parent task of ‘Prec(ti)’ 
respectively. In a similar manner the task finishing time ‘TFT’, is measured based on the 
task establishment time ‘TET’ and execution time of task ‘ti’ on processor ‘Pn’ 
respectively. The pseudo code representation of two-factor divide-and-conquer dependent 
task scheduler is given below. 
Algorithm 1 Two-factor divide-and-conquer dependent task scheduler 

Input: IoT devices ‘D = D1, D2, …, Dn’, Cloud Service Provider ‘CSP = CSP1, CSP2, …, 
CSPn’, Task Scheduler ‘TS = TS1, TS2, …, TSn’ 
Output: Optimal Scheduled Task ‘ST = ST1, ST2, …, STn’ 
1: Begin 
2: For each IoT devices ‘D’ and Task Scheduler ‘TS’ 
3: Evaluate the average computation cost using (3) 
4: Evaluate the average communication time using (4) 
5: Measure task establishment time using (5) 
6: Measure task finishing time using (6) 
7: Return (optimal scheduled tasks) 
8: End for 
9: End 

As given in the above two-factor divide-and-conquer dependent task scheduler algorithm, 
as the name implies two different factors is considered. They are cost and time. First, the 
incoming tasks are recursively break down. The solution to the problem is arrived at 
based on the two different factors. The average computation cost for each IoT devices for 
scheduling particular task is obtained. Next, the average communication time incurred in 
scheduling the task is measured. Finally, the task establishment and task finishing time 
are evaluated. Accordingly, the tasks are said to be scheduled in an optimal manner, 
therefore contributing to both bandwidth utilisation and task response time. 
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Figure 4 Block diagram of deep resource allocator 

 

3.3 Deep resource allocation 

To improve the performance and efficiency in terms of throughput, in this work, a deep 
resource allocation model is designed. This deep resource allocation model considers 
both the auto encoder and fully connected neural network to the scheduled task to 
improve the rate of throughput. Let us consider an encode function ‘EF(.)’ and decode 
function ‘DF(.)’ for the AE and is mathematically formulated as given below: 

( )(.) log 1 (.) (.)E EEF EXP WM B = + +   (7) 

(.) (.) (.)D DDF WM B= +  (8) 

From equations (7) and (8), encode and decode functions is arrived at based on the 
weight matrix of encode function ‘WME(.)’, weight matrix of decode function ‘WMD(.)’, 
bias of encode function ‘BE(.)’ and bias of decode function ‘BD(.)’ respectively. In 
addition, there exists ‘n’ layers in FCNN, where ‘WM(n,n–1)’ represents the weight matrix 
between ‘(n – 1)th’ layer and ‘nth’ layer with ‘Bn’ representing the bias for neurons in the 
‘nth’ layer. Besides, the cloud energy consumption and transmission delay are also used 
as input. Energy consumed is measured based on the CPU clock cycle of each cloud 
computing machine. Then, energy consumption based on the CPU clock cycle of each 
cloud computing machine is measured as given below: 

( )[ ]cloud
j j ijE N E D= ∗α  (9) 

As given in equation (9), the cloud energy consumption of the ‘jth’ cloud server is 
obtained by multiplying the on/off state of cloud server ‘j’, ‘αj’, number of turned on 
machines at cloud server ‘Nj’ and each device energy consumption value ‘E(Dj)’ 
respectively. Let ‘dij’ denote the delay of IoT device transmission path from task 
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scheduler ‘i’ to the cloud server ‘j’ and ‘λij’ represent the traffic arrival rate from task 
scheduler ‘i’ to the cloud server ‘j’, then, the transmission delay is measured as given 
below: 

ij ij ijTD d λ= ∗  (10) 

Figure 4 shows the block diagram of deep resource allocator. 
The inputs of the deep resource allocation model for AE consists of the known 

parameters, i.e., scheduled task ‘ST’ and the input of the FCNN consists of the scheduled 
task and the ratio of the scheduled task and number of requests made by the IoT devices, 
that is rewritten as given below: 

1
( )

n
ii

In AE ST
=

=  (11) 

( )
1

( ) , where
n i

i i i i i

STIn FCNN ST In In
Req=

= ∪ =  (12) 

The output of AE is the union of the scheduled task and the ratio of scheduled task to the 
requests made. Finally, the output of FCNN is written as given below with the 
consideration of the energy consumption ‘ ’cloud

jE  and transmission delay ‘TDij’. 

( )
1
( )

n cloud
ijji

Out In E TD
=

=  (13) 

The pseudo code representation of deep resource allocator is given below: 
Algorithm 2 Deep resource allocator 

Input: IoT devices ‘D = D1, D2, …, Dn’, Cloud Service Provider ‘CSP = CSP1, CSP2, …, CSPn’, 
Task Scheduler ‘TS = TS1, TS2, …, TSn’ 
Output: Improved throughput 
1: Begin 
2: Initialise scheduled tasks ‘ST’ 
3: For each IoT devices ‘D’ and Cloud Service Provider ‘CSP’ 
4: Evaluate encode and decode function for AE using (7) and (8) 
5: Measure activation function based on energy consumption and transmission 

delay using (9) and (10) 
6: Obtain input for AE and FCNN using (11) and (12) 
7: Measure output for FCNN using (13) 
8: Return (optimal resource allocation) 
9: End for 
10: End 

As given in the above algorithm, for each IoT devices and cloud service provider as 
input, the scheduled tasks arrived is first initialised. Next, with the objective of improving 
the throughput, a deep resource allocator algorithm, considering both AE and FCNN is 
utilised that in addition to the conventional model also utilises the energy consumption 
and transmission delay into consideration for managing the resources to fulfil the requests 
generated by the IoT devices in a timely manner. 
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4 Implementation and analysis 

In this section, the numerical experiments results are presented to examine the efficiency 
of storage and resource allocation as well as comparing our method performance with 
other methods in terms of bandwidth utilisation, task response time and throughput to 
allocate the resources to user smart devices via task scheduler and cloud server. The 
comparison method uses IoT-aware multi-resource task scheduling (Lin et al., 2019) and 
deadline and cost-aware genetic algorithm (DCGA) (Ma et al., 2019) towards resource 
scheduling via task scheduler using active personal cloud measurement obtained from 
Personal Cloud Datasets, NEC Personal Cloud Trace (Gracia-Tinedo et al., 2013). 

4.1 Experiment settings 

The characteristics of our target system are illustrated in Table 1. In our PC, one Intel 
CoreTM i7 965 and 8 GB RAM is used. The proposed method was simulated on 
CloudSim (https://code.google.com/p/cloudsim/downloads/list), a framework specifically 
utilised for modelling and simulation of infrastructures and services in Java. 
Table 1 Characteristic of the target system 

Parameter Value 
Network LAN 
Topology Connected 
Number of smart devices 10 
Bandwidth 10 – 512 Mbps 

4.2 Comparative analysis of bandwidth utilisation 

Bandwidth utilisation refers to the data rate (i.e., for each IoT device) that is supported by 
the network connection (i.e., cloud server) or the interfaces that connect to the network. 
Bandwidth utilisation denotes both the volume and time. In other words, it refers to the 
amount or frequency of data that are said to be transmitted between two ends in a 
stipulated time period and expressed in terms of bits per second (b/s) or kilo bits per 
second (Kb/s). This is mathematically formulated as given below: 

_
_

Avg DBU D
Avail NBW

= ∗  (14) 

From equation (14), the bandwidth utilisation ‘BU’ is measured based on the average 
utilisation required by specific application (i.e., IoT devices) ‘Avg_D’, available network 
bandwidth ‘Avail_NBW’ and the number of IoT device’s request ‘D’ respectively.  
Table 2 shows the comparative analytical representation results of bandwidth utilisation 
for three different methods, TFTS-DRA, IoT-aware multi-resource task scheduling (Lin 
et al., 2019) and DCGA (Ma et al., 2019). 
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Table 2 Comparative results of TFTS-DRA, IoT-aware multi-resource task scheduling (Lin  
et al., 2019) and DCGA (Ma et al., 2019) 

Number of IoT 
devices 

Bandwidth utilisation (Mb/s) 

TFTS-DRA IoT-aware multi-resource 
task scheduling DCGA 

25 500 400 300 
50 600 450 350 
75 700 530 420 
100 900 620 500 
125 1,200 750 630 
150 1,300 900 840 
175 1,400 1,200 990 
200 1,800 1,400 1,200 
225 1,850 1,550 1,450 
250 2,000 1,700 1,650 

Figure 5 Bandwidth utilisation comparisons (see online version for colours) 

 

Figure 5 shows the comparative analysis results of bandwidth utilisation for three 
different methods, TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et al., 
2019) and DCGA (Ma et al., 2019). From the figure it is inferred that increasing the 
number of IoT devices cause an increase in the bandwidth utilisation. It is evident from 
the simulation experiments conducted with the requests of the numbers of IoT devices. 
With the assumed available network bandwidth being ‘250 Kb/s’, average utilisation by 
specific IoT device for TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et al., 
2019) and DCGA (Ma et al., 2019) were found to be ‘125 Kb/s’, ‘100 Kb/s’ and  
‘75 Kb/s’ respectively. 

From this it is inferred that the bandwidth utilisation was found to be better when 
applied with TFTS-DRA. This is due to the application of two-factor divide-and-conquer 
dependent task scheduler algorithm. By applying this algorithm, two different factors, 
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like, average computation cost and average communication time were considered during 
the scheduling of tasks. With this, the average utilisation required by the IoT devices 
were said to be satisfied with the aid of TFTS-DRA and therefore improving the 
bandwidth utilisation by 32% compared to Lin et al. (2019) and 5% compared to Ma  
et al. (2019). 

4.3 Comparative analysis of task response time 

The task response time refers to the time consumed in responding to the IoT devices’ 
tasks. Higher the number of tasks being requested by the IoT device, greater is the task 
response time. This is mathematically evaluated as given below: 

1
[ ]

n
time ii

TR D Time TR TFT TET
=

= ∗ = −  (15) 

From equation (15), the task response time is measured based on the IoT devices’ 
requests ‘Di’ being placed in the cloud server and the time consumed in responding the 
task ‘TIME[TR]’, which is the difference between the task finishing time ‘TFT’ and task 
establishment time ‘TET’ respectively. Table 3 shows the comparative analytical 
representation results of average task response time for three different methods,  
TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et al., 2019) and DCGA (Ma 
et al., 2019). 
Table 3 Comparative results of TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et 

al., 2019) and DCGA (Ma et al., 2019) 

Number of IoT 
devices 

Task response time (ms) 

TFTS-DRA IoT-aware multi-resource 
task scheduling DCGA 

25 3.375 4.625 5.375 
50 5.325 7.135 8.235 
75 7.855 10.255 12.445 
100 9.325 11.355 13.355 
125 10.155 13.455 16.352 
150 11.235 15.675 19.255 
175 13.555 18.355 21.355 
200 15.895 19.235 24.555 
225 18.325 21.225 29.355 
250 20.455 22.355 33.325 

Figure 6 given above shows the response time comparison in the y axis and number of 
IoT devices’ requests placed by IoT devices in the cloud server in the x axis. The number 
of IoT devices is varied in the range of 25 to 250 with an average 10 simulation run at 
different time intervals. Increasing the number of IoT devices requests in the cloud server 
obviously results in the large number of tasks to be scheduled by the cloud server in 
cloud computing environment. This is evident from the simulation with ‘15’ IoT devices 
request placed in the cloud server, the tasks response time for scheduling single IoT 
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device using TFTS-DRA was found to be ‘0.135 ms’, ‘0.185 ms’ using (Lin et al., 2019) 
and ‘0.215 ms’ using (Ma et al., 2019) respectively. 

Figure 6 Task response time comparisons (see online version for colours) 

 

From these results it is inferred that the average task response time is comparatively 
lesser using TFTS-DRA when compared to Lin et al. (2019) and Ma et al. (2019). This is 
because of the application of cost and time-based divide and conquer task scheduling 
model. By applying this model, the IoT devices’ tasks to be scheduled are partitioned into 
smaller elements and the elements are scheduled optimally via two cost and time factors. 
Besides, the IoT devices’ request to be accommodated on idle time slots (ITS), the task 
establishment time ‘TET’ and task finishing time ‘TFT’ are defined. With this, the 
average task response time with TFTS-DRA is said to be reduced by 21% compared to 
Lin et al. (2019) and 37% compared to Ma et al. (2019). 

4.4 Comparative analysis of throughput 

Finally, the throughput refers to the percentage ratio of IoT devices’ request of task 
addressed with the required resources ‘Diaddressed’ to the IoT devices’ request placed in 
the cloud server ‘Direquest place’. 

100i

i

D addressedT
D request placed

= ∗  (16) 

From equation (16), with higher number of devices’ tasks being allocated with the 
required resources, more efficient the method is said to be and is measured in terms of 
percentage (%). Table 4 shows the comparative analytical representation results of 
throughput rate for three different methods, TFTS-DRA, IoT-aware multi-resource task 
scheduling (Lin et al., 2019) and DCGA (Ma et al., 2019). 

Figure 7 shows the comparative result analysis of throughput rate for three different 
methods. As illustrated in the above figure, increasing the IoT devices results in larger 
number of IoT devices requests for allocating the scheduling tasks and therefore larger 
number of requests being handled to allocation in an optimal manner, the throughput 
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obviously will get reduced. However, from the figure it is inferred that the throughput 
rate using the proposed method is less compared to the Lin et al. (2019) and Ma et al. 
(2019). This is because of the application of deep resource allocator algorithm. In this 
algorithm, both the auto encoder and fully connected neural network are considered. 
Besides, the activation function is generated based on the cloud energy consumption and 
transmission delay. With this, resource allocation for the scheduled task is made only 
based on energy being consumed and the delay incurred during transmission. By 
considering all these factors, the throughput rate using TFTS-DRA is improved by 8% 
when compared to Lin et al. (2019) and 11% when compared to Ma et al. (2019). 
Table 4 Comparative results of TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et 

al., 2019) and DCGA (Ma et al., 2019) 

Number of IoT 
devices 

Throughput (%) 

TFTS-DRA IoT-aware multi-resource 
task scheduling DCGA 

25 92 84 80 
50 91.35 82.15 78.15 
75 90.25 81.35 78 
100 90 80 77.35 
125 88.15 81.35 77.15 
150 86.35 80.25 77 
175 84 78.35 76.95 
200 82.15 77.15 76.85 
225 80 77.06 76.75 
250 80 77.02 76.77 

Figure 7 Throughput rate comparisons (see online version for colours) 
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5 Conclusions 

In this paper, we have focused on ensuring the quality of service in terms of bandwidth 
utilisation, task response time and throughput for end users by efficiently allocating the 
available resources to IoT-based applications in cloud environment. Therefore, we have 
proposed a two-factor-based resource allocator model that is scalable and well applicable 
to the cloud computing environment. Unlike traditional resource allocation models for 
IoT, we have efficiently mapped the resources to the IoT applications by considering 
computation cost and communication time for the IoT applications. In addition, we have 
investigated the throughput rate by means of combining the auto encoder and fully 
connected neural network on the outcomes of the scheduled tasks through extensive 
analysis. The simulation results show that, the proposed method is able to address task 
response time and bandwidth utilisation and we have observed significant performance 
gains compared to the other traditional IoT-based resource allocation methods for cloud 
computing environment. 
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Nomenclatures 

List of symbols Description 
D = D1, D2, …, Dn Set of IoT devices 
CSP = CSP1, CSP2, …, CSPn Cloud service providers 
Datasize Data size 
Sdelay Service delay 
TS = TS1, TS2, …, TSn Task scheduler 

1 2{ , , , }j j jj
iTS ts ts ts=   Task scheduler selection 

1 2, , ,j j jj
mBW bw bw bw=   Bandwidth 

1 2, , ,j j jj
nCPU cpu cpu cpu=   CPU clock speed 

{( , )| , }j j j jj j j
n n m nRD bw cpu bw BW cpu CPU= ∈ ∈  Resource duality sets 

TET(Di) Task establishment time 
TFT(Di) Task finishing time 
ACC Average computation cost 
ACT Average computation time 
n Number of tasks 
ti Task 
Pn Processor 
Prec(ti) Arrival time of parent task 
EF(.) Encode function 
DF(.) Decode function 
WME(.) Weight matrix of encode function 
WMD Weight matrix of decode function 
BE(.) Bias of encode function 
BD(.) Bias of decode function 
Nj Number of turned on machines 
Bn Bias for neurons in ‘nth’ layer 
E(Dj) Each device energy consumption value 
dij Delay of IoT device transmission path 
λij Traffic arrival rate 

cloud
jE  Energy consumption 

TDij Transmission delay 
BU Bandwidth utilisation 
Avg_D Average bandwidth utilisation by IoT 

devices 
Avail_NBW Available network bandwidth 
Time[TR] Time consumed in responding tasks 
Di addressed IoT device request of task addressed with 

required resources 
Di request placed IoT devices request placed 
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