

 Int. J. Internet Technology and Secured Transactions, Vol. 12, No. 1, 2022 61

 Copyright © 2022 Inderscience Enterprises Ltd.

An IoT-based two-factor divide and conquer task
scheduler and deep resource allocator for cloud
computing

Sripriya Arun*
Alpha Arts & Science College, Porur,
No.30, Tundalam Road, Chettiyar Agaram Road,
Behind Ramachandra Hospital,
Porur, Chennai, Tamil Nadu 600116, India
Email: priyaarun02@gmail.com
*Corresponding author

Sundara Rajan
Government Arts College for Men,
No.329, Annasalai, Nandanam, Chennai – 600035, India
Email: drmsrajan23@yahoo.com

Abstract: The epidemic developing rate of the networking technologies has
resulted in an impressive sizeable scope of the associated computing
framework. Internet-of-things (IoT) is considered a substitute for acquiring
high performance by the improved potentialities in task scheduling, resource
allocations and information exchanges. However, the current IoT is
experiencing the gridlock of the task scheduling and resource allocation due to
the higher level of dependency while scheduling and convoluted service
contributing frameworks. With task scheduling and resource allocation
considered with salient characteristics of cloud computing (CC) environment,
this paper proposes a method called two-factor task scheduler and deep
resource allocator (TFTS-DRA) based on IoT. In this method, each task is
processed before its actual allocation to the cloud resources by cost and
time-based divide and conquer task scheduling model. The resources are
allocated using deep resource allocation model, which considers the auto
encoder (AE) and fully connected neural network (FCNN) with energy
consumption and transmission delay of cloud resources as constraints.
Simulation results show that the proposed TFTS-DRA method performs in an
extensive manner with higher throughput rate. The numerical results shows that
proposed deep resource allocator algorithm in an IoT-CC environment, both the
bandwidth utilisation and energy consumption can be improved.

Keywords: internet of things; IoT; cloud computing; two factors; task
scheduler; deep resource allocator; auto encoder; fully connected neural
network.

Reference to this paper should be made as follows: Arun, S. and Rajan, S.
(2022) ‘An IoT-based two-factor divide and conquer task scheduler and deep
resource allocator for cloud computing’, Int. J. Internet Technology and
Secured Transactions, Vol. 12, No. 1, pp.61–79.

 62 S. Arun and S. Rajan

Biographical notes: Sripriya Arun holds a PhD from VISTA in Computer
Science and Master in Computer Applications from Bharathidasan University.
She has made unique contribution into understanding the broad sweep of
technical developments in computer cloud security and digital forensics. She
has authored and published several articles on cloud security at various forums.
She has also integral part of many discussion forums and contributed to various
workshop related to cryptography and cloud forensics computing. She is
currently working as a Vice-Principal in Alpha Arts and Science College,
Chennai.

Sundara Rajan guided more than ten doctoral scholars of state and deemed
university in computer science with 24 years of experience in teaching. He
started his career as software consultant in the USA and moved to teaching,
presented papers in international journals, served as member for academic
board in colleges and university. He is a member of the Staff Selection
Commission Regional Office, Southern Region, Chennai.

1 Introduction

With the developing popularity of the application of cloud computing, the needs for CC
have also increased in height. Research analysis concentrating on CC has started using it
due to its better performance along with the lower energy consumption model. Many
science applications, like the internet of things (IoT), sequencing gene operations and
prediction for earthquake modelling are becoming in high demand vulnerable to
high-performance computing and storage in a distributed fashion. Hence, CC can be seen
as a perspective where a flexible heterogeneous resource pool via network, and users on
demand rent varied resources according to the needs and requirements.

Two IoT-aware multi-resource task scheduling algorithm was proposed in Lin et al.
(2019) to attain both load balancing and minimise the task response time for each IoT
device. The two tasks scheduling algorithms were resource load balancing and time
balancing based on heuristics. The main contribution lies in the way the correct virtual
mappings are being performed between virtual machines. During the pre-processing, two
phases were included, task ordering by means of priority and task re-ordering according
to the task category. The urgency was addressed by means of prioritising and segregation
of task between IoT and common was done by means of categorisation.

Besides, two strategies, namely, selecting strategy and mapping strategy were also
included via greedy algorithm. With this, both the energy consumption and IoT average
task response time were found to be reduced. However, dependent task scheduling was
not focused and therefore compromising both the bandwidth utilisation and average
response time. In this work to improve both the bandwidth utilisation and average
response time, a dependent task scheduling model based on cost and time-based divide
and conquer task scheduling is designed. Here, by considering both the computation cost
and communication time while performing divide and conquer while task scheduling,
optimal task scheduling is said to be achieved.

A deadline and cost-aware genetic algorithm (DCGA) for scheduling of workflows in
IoT applications were designed in Ma et al. (2019). With the objective of reducing and
cut shorting the cost involved, the algorithm concentrated on the trivial aspects of the
cloud, like, acquisition of resources on-demand, dynamics in a heterogeneous manner,

 An IoT-based two-factor divide and conquer task scheduler 63

delay incurred during the acquisition and variations of performance involved in the
virtual machines.

Besides, heuristic operations were also utilised to allocate different tasks to the
concerned VMs, therefore contributing to execution time and execution cost. However,
the throughput was not focused. To address this issue, in this work, a deep resource
allocator is designed that uses both auto encoder and fully connected neural network to
achieve better throughput.

Under the above circumstances, in this paper we propose an integrated task
scheduling and resource allocation method that not only evaluates the cost and
time-based task scheduling, but also considers the clock cycle of each cloud computing
machine during resource allocation. Furthermore, we consider the auto encoder and fully
connected neural network for IoT applications in a dynamic cloud environment. In
essence, the main contributions of this paper are as follows:

• We formulate a joint task scheduling and resource allocation problem in the
downlink of the cloud computing environment with cost and time constraints.
Therefore, we provide a divide and conquer framework to decompose the complex
IoT device scheduling into manageable and recursively breakup of tasks to optimise
the task to be scheduled for IoT applications.

• We formulate a two-side deep resource allocator via auto encoder and fully
connected neural network to initiate the scheduled task association followed by task
scheduling between the cloud computing infrastructures and the IoT devices.
Furthermore, the two-factor divide and conquer-based analytical framework
significantly enhances the performance of the task response time.

• We perform extensive numerical analysis to evaluate the performance of the
proposed approach. The results show that the two-factor task scheduler and deep
resource allocator (TFTS-DRA) based on IoT for joint task scheduling and resource
allocation achieves higher utility gain for the users. In addition, the average task
response time outperforms the conventional resource allocation for IoT-based cloud
computing.

The remainder of the paper is organised as follows. In Section 2, an extensive literature
based on the current task scheduling and resource allocation for IoT-based applications in
cloud environment is presented. In Section 3, the system model and the proposed method
with neat block diagram and algorithm is presented. In Section 4, numerical analysis is
presented to validate the performance and efficiency of the proposed method. Finally, in
Section 5 the paper is concluded with concluding remarks.

2 Related works

In recent years, to ensure quality of service (QoS) to internet of things (IoT), the cloud
computing environment has transferred toward the edge pattern. A joint user association
and resource allocation framework was designed in Abedin et al. (2019) with the aid of
analytic hierarchy process (AHP), therefore ensuring stability of user allocation and
higher utility gain in terms of resource allocation. A specific fog computing network was
proposed in Zhang et al. (2017) to achieve optimal and stable performance via
Stackelberg game. However, two important factors, like, energy consumption and

 64 S. Arun and S. Rajan

application requests completion time were not analysed. To focus on this aspect, energy
and time efficient computation offloading and resource allocation (ETCORA) algorithm
was presented in Sun et al. (2019).

Security aspects were included in Ben Daoud et al. (2019) by means of distributed
access control mechanism. With this high focus was made on privacy and security
aspects along with the minimisation of administration complexity. However, with
massive number of applications, data processing has to be performed between IoT
devices in an efficient manner. Therefore, QoS was focused in Reddy and Krishna (2020)
by means of optimised fuzzy scheduling approach. With this, makespan of time was
reduced along with the improvement in QoS.

As far as disaster management is concerned, resource allocation is said to be one of
the most crucial one to be addressed. A resource allocation algorithm was presented in
Choksi and Zaver (2019) using multi-objective mechanism dealing with both under and
over demand resource utilisation. Besides, a priority-based scheduling technique was also
applied for dense network. A distributed resource allocation for IoT using generalised
Nash equilibrium (GNE) was proposed in Abuzainab et al. (2017) that not only decreased
the total energy consumption but also satisfied QoS constraints in an effective manner. A
resource trading mechanism utilising iterative double sided auction scheme was presented
in Li et al. (2017).

There have been several research articles combining both the cloud and sensors.
However, combining both sensors and applications at the application layer are found to
be new in number. The objective of the work done in Bose et al. (2019) was to present a
sensor-cloud architecture that created virtual sensors to facilitate both computing and
resource capabilities. A collaborative between fog and cloud was performed in Alsaffar
et al. (2016) to improve resource allocation in an efficient manner and ensuring optimised
big data distribution. Virtual experiments were conducted in Al-Zoubi and Wainer (2019)
besides real experiments separately to select best discovered resource servers.

A student project allocation game was designed in Gu et al. (2018) for the postulated
joint resource allocation problem that in turn improved user satisfaction. However, the
reliability was not addressed. To focus on this aspect, the power of machine learning was
combined with optimisation mechanism in Liao et al. (2019) that contributed network
throughput. QoS for smart home healthcare applications was proposed in Hassan et al.
(2017) using agent-based modelling (ABM) for ensuring optimal resource allocation. A
comprehensive survey to enhance the IoT network performance was provided in Yu et al.
(2018). A summary of IoT research related to smart technology, data mining, cellular
communication was investigated in Ud Din et al. (2019).

However, due to the mismatch in service quality observed in networking and
environment providing complicated services, the quality of experience were
compromised. To address this issue, two reinforcement learning-based algorithms were
utilised in Gaia and Qiub (2018) to improve the same. A game strategy that included
profit to the providers and enforcing penalty cost to offenders were proposed in Choi and
Lim (2016) therefore, concentrating on the success rate of job completion to a greater
extent.

A cooperative resource scheduling was carried out in Al-Turjman et al. (2018) for
energy-constrained application with high reliability performance. The designed process
improved the quality of service with higher throughput and minimal delay. Genetic
algorithm (GA) and ant colony optimisation (ACO) termed GAACO algorithm was

 An IoT-based two-factor divide and conquer task scheduler 65

introduced in Basu et al. (2018) to choose the best combination of tasks at every stage.
GAACO algorithm guaranteed the suitable convergence and optimality.

A scheduling algorithm was introduced in Preethi and Jayavel (2018) to assign the
static tasks with respect to resource availability efficiently. The designed algorithm
managed the situation efficiently through inserting the jobs under different weightage
queues. A new technique was designed in The et al. (2019) to optimise the task
scheduling issue for bag-of-tasks applications in cloud with minimal execution time and
operating cost.

As discussed in the literature survey, a number of materials and methods have been
presented for scheduling tasks and using the optimal resources. With the availability of
constrained resources and large number of devices to be allocated for IoT-based
applications, the optimal resource allocation is very much necessary. In this context, there
necessitates a method that considers both tasks and performs the allocation of resources
by considering several objectives and benchmarks. There are a number of issues like,
independent and dependent task scheduling, minimising the task response time, and
accomplishing all IoT tasks with minimum cost. In this work, these issues are handled,
which differentiates our proposed method from other methods reported in the literature.
In this paper, factor task scheduler and deep resource allocator (TFTS-DRA) based on
IoT for cloud computing environment is proposed. The proposed method is evaluated
based on the average computation cost and average communication time. Overall, using
our proposed method, the performance of the system is improved in terms of the number
of parameters, namely, bandwidth utilisation, task response time and throughput rate.

3 Two-factor task scheduler and deep resource allocator method

In this section, a method called, two factor task scheduler and deep resource allocator
(TFTS-DRA) based on IoT for cloud computing environment with the objective of
improving the throughput with minimum bandwidth and task response time is presented.
The proposed method is split into two stages. They are task scheduling and resource
allocation. In real time situation, different types and size of tasks arrive at the cloud
computing stations. The proposed method obtains the requests from several IoT devices
as input. To manage the tasks that enter into the cloud computing environment, a cost and
time-based divide and conquer task scheduling model is first designed. Next, in the
second stage, the proposed method also addresses the resource allocation by the cloud
server via deep resource allocation model. The elaborate description of the TFTS-DRA
method is given below.

3.1 System model

Let us consider a network consisting of a set of IoT devices ‘D = D1, D2, …, Dn’, such as
smart phones, cameras for surveillance, vehicles, fire alarming devices and so on. These
IoT devices or IoT users may discharge certain type of storage tasks to the cloud service
providers (CSPs), that are represented as ‘CSP = CSP1, CSP2, …, CSPn’. These ‘CSPs’
can meet several IoT devices or users with distinct computing requirements both in terms
of data size ‘Datasize’ and service delay ‘Sdelay’ respectively. The overall network topology
is illustrated in Figure 1.

 66 S. Arun and S. Rajan

Figure 1 Overall network topology (see online version for colours)

To be specific, certain sensitive IoT devices like, fire alarming devices are frequently
more delay sensitive. On the other hand, the IoT devices like smart phones are frequently
more adaptable concerning the service delay essentials. Let us consider the fire alarm
system as a real-time case scenario. Fire department or fire brigade (i.e., cloud server) is a
public organisation that provides the predominantly emergency fire fighting and rescue
services for particular geographic area (i.e., municipality, county, or fire protection
district). Alarms are considered as the first line of defence in event of fire occurrence and
act as early warning sign giving the chance to escape from any fire-related danger. Each
building/establishment in geographic area acts as an IoT network. A fire department
includes one or more fire stations (i.e., cloud service provider) within boundaries and
staffed by career firefighters, volunteer firefighters, or combination. When an alarm
warning sign is received in fire department, task scheduler schedules the nearby fire
stations for the preventing from fire accidents. By this way, we tell that IoT devices are
not delay sensitive, the computing are sent to the cloud and for those IoT devices with
precise delay essentials, the requirements, the Task Scheduler ‘TS = TS1, TS2, …, TSn’
will assign one of the ‘CSPs’ to discharge the computation task. However, the ‘CSPs’
that are adjacent to the IoT devices classically result in smaller delay. But, the topological
factor is not the only element that influences the entire service delay.

The service delay comprises of three time periods, which are transmission time, CPU
processing time and the reception time. The transmission time and reception time are
defined as the time utilised for sending data to task schedulers ‘TS’ and the time utilised
for obtaining the processed results, depending on the data size. The CPU processing time
refers to the CPU rate of each ‘TS’. Thus for any cloud service provider ‘CSP’, while
selecting the task scheduler from the set 1 2‘ { , , , }’j j jj

iTS ts ts ts=  for each IoT device or

 An IoT-based two-factor divide and conquer task scheduler 67

user will cooperatively assign its bandwidth 1 2‘ , , , ’j j jj
mBW bw bw bw=  and CPU clock

speed 1 2‘ , , , ’j j jj
nCPU cpu cpu cpu=  respectively. Figure 2 shows the system model.

Figure 2 Proposed system model

From the IoT devices’ or users’ outlook, who have delay sensitive data to be processed,
are sent to the cloud service provider to content for finer resources (both bandwidth and
CPU clock speed). In addition, IoT devices’ or users’ will take the data sizes into
consideration. This is due to the reason that more data to be processed necessitates
extensive transmission time and also extensive CPU processing time.

Let us further assume, the cooperative bandwidth and CPU clock cycle to be
treated as the scaling between the IoT user or device sets ‘D’ and the (cooperative
bandwidth and CPU clock cycle) resource duality sets ‘ {(,)| ,j j jj j

m n mRD bw cpu bw BW= ∈

}’j j
ncpu CPU∈ possessed by each cloud service provider. Then, the scaling correlation

‘SC’ is mathematically derived as given below:

1, if is discharged toij
mn iSC d TS= (1)

0, if is not discharged toij
mn iSC d TS= (2)

With the purpose of optimising the integrated resource allocation, both the benefit of IoT
devices’ ‘D’ and the cloud service providers ‘CSPs’ are considered in this work that are
analysed in the forthcoming sections.

 68 S. Arun and S. Rajan

3.2 Cost and time-based divide and conquer task scheduling model

In this section, a cost and time-based divide and conquer task scheduling model is
designed with the objective of arranging the incoming requests or tasks in an optimal
manner by considering the dependent tasks also during scheduling. Let ‘D = D1, D2, …,
Dn’ represent a set of IoT devices on the IoT layer connected to the task scheduler ‘TS =
TS1, TS2, …, TSn’. Besides, a duplex communication model has been utilised in our work
to ensure task flow, data transmission and data reception in a parallel fashion.

The input of the heterogeneous IoT task scheduling model includes a schedule of
finite directed graph with task scheduler and IoT devices. The output is a schedule
constituting the allocation of incoming requests or tasks in a certain manner so that the
resources available in hand are said to be utilised optimally. On the other hand, the task
scheduling comprises of each task in each application being allocated with Task
establishment time ‘TET(Di)’ and task finishing time ‘TFT(Di)’ respectively. Figure 3
shows the block diagram of cost and time-based divide and conquer task scheduling
model.

Figure 3 Block diagram of cost and time-based divide and conquer task scheduling model
(see online version for colours)

As illustrated in Figure 3, the implementation of cost and time-based divide and conquer
task scheduling model is given below. The tasks to be scheduled are recursively break
down into two or more tasks and this process is repeated until the tasks are said to be
scheduled in a direct pattern. With the arrival of ‘n’ number of tasks, the tasks are broke
down based on the average computation cost and average communication time and
accordingly, the process of scheduling is performed.

To start with the average computation cost ‘ACC’ and average communication time
‘ACT’ required for each IoT device ‘Di’ that has placed its request as input to the task
scheduler ‘TS’ is formulated and is mathematically expressed as given below:

()
1

n i
i i i i

CPUACC t D
R

i
=

= = (3)

From equation (3), the average computation cost ‘ACC’ for each task ‘ti’ to
corresponding device ‘Di’ is measured by means of the CPU clock cycle ‘CPUi’ and
processing rate ‘Ri’ respectively.

 An IoT-based two-factor divide and conquer task scheduler 69

()
1

n ij
i ij i i

DM
ACT t D

BW
i

=
→ = (4)

Besides, the average communication time ‘ACT’ for each task ‘ti’ is measured via data
migration between device ‘Di’ and ‘Dj’ and the bandwidth ‘BWi’ respectively. In order to
schedule a task for each IoT device on a processor by the task scheduler, tasks have to be
accommodated on idle time slots (ITS). For that purpose, in this work, the task
establishment time ‘TET’ and task finishing time ‘TFT’ are defined. Here ‘TET(ti, Pn)’
and ‘TFT(ti, Pn)’ represents the task establishment time and task finishing time of task ‘ti’
for device ‘Di’ on processor ‘Pn’ respectively. They are mathematically formulated as
given below:

() () () ()[]{ }, ,i n n i iTET t P MAX Time P ACC t ACT t= + (5)

() () () ()(), , ,i n i n i n iTFT t P TET t P Time t P ArrivalTime Prec t= + + (6)

From equation (5), the task establishment time ‘TET’ is obtained based on the execution
time on processor ‘Pn’ potential of scheduling task ‘ti’, average computation cost ‘ACC’,
average communication time ‘ACT’ and the arrival time of the parent task of ‘Prec(ti)’
respectively. In a similar manner the task finishing time ‘TFT’, is measured based on the
task establishment time ‘TET’ and execution time of task ‘ti’ on processor ‘Pn’
respectively. The pseudo code representation of two-factor divide-and-conquer dependent
task scheduler is given below.
Algorithm 1 Two-factor divide-and-conquer dependent task scheduler

Input: IoT devices ‘D = D1, D2, …, Dn’, Cloud Service Provider ‘CSP = CSP1, CSP2, …,
CSPn’, Task Scheduler ‘TS = TS1, TS2, …, TSn’
Output: Optimal Scheduled Task ‘ST = ST1, ST2, …, STn’
1: Begin
2: For each IoT devices ‘D’ and Task Scheduler ‘TS’
3: Evaluate the average computation cost using (3)
4: Evaluate the average communication time using (4)
5: Measure task establishment time using (5)
6: Measure task finishing time using (6)
7: Return (optimal scheduled tasks)
8: End for
9: End

As given in the above two-factor divide-and-conquer dependent task scheduler algorithm,
as the name implies two different factors is considered. They are cost and time. First, the
incoming tasks are recursively break down. The solution to the problem is arrived at
based on the two different factors. The average computation cost for each IoT devices for
scheduling particular task is obtained. Next, the average communication time incurred in
scheduling the task is measured. Finally, the task establishment and task finishing time
are evaluated. Accordingly, the tasks are said to be scheduled in an optimal manner,
therefore contributing to both bandwidth utilisation and task response time.

 70 S. Arun and S. Rajan

Figure 4 Block diagram of deep resource allocator

3.3 Deep resource allocation

To improve the performance and efficiency in terms of throughput, in this work, a deep
resource allocation model is designed. This deep resource allocation model considers
both the auto encoder and fully connected neural network to the scheduled task to
improve the rate of throughput. Let us consider an encode function ‘EF(.)’ and decode
function ‘DF(.)’ for the AE and is mathematically formulated as given below:

()(.) log 1 (.) (.)E EEF EXP WM B = + +  (7)

(.) (.) (.)D DDF WM B= + (8)

From equations (7) and (8), encode and decode functions is arrived at based on the
weight matrix of encode function ‘WME(.)’, weight matrix of decode function ‘WMD(.)’,
bias of encode function ‘BE(.)’ and bias of decode function ‘BD(.)’ respectively. In
addition, there exists ‘n’ layers in FCNN, where ‘WM(n,n–1)’ represents the weight matrix
between ‘(n – 1)th’ layer and ‘nth’ layer with ‘Bn’ representing the bias for neurons in the
‘nth’ layer. Besides, the cloud energy consumption and transmission delay are also used
as input. Energy consumed is measured based on the CPU clock cycle of each cloud
computing machine. Then, energy consumption based on the CPU clock cycle of each
cloud computing machine is measured as given below:

()[]cloud
j j ijE N E D= ∗α (9)

As given in equation (9), the cloud energy consumption of the ‘jth’ cloud server is
obtained by multiplying the on/off state of cloud server ‘j’, ‘αj’, number of turned on
machines at cloud server ‘Nj’ and each device energy consumption value ‘E(Dj)’
respectively. Let ‘dij’ denote the delay of IoT device transmission path from task

 An IoT-based two-factor divide and conquer task scheduler 71

scheduler ‘i’ to the cloud server ‘j’ and ‘λij’ represent the traffic arrival rate from task
scheduler ‘i’ to the cloud server ‘j’, then, the transmission delay is measured as given
below:

ij ij ijTD d λ= ∗ (10)

Figure 4 shows the block diagram of deep resource allocator.
The inputs of the deep resource allocation model for AE consists of the known

parameters, i.e., scheduled task ‘ST’ and the input of the FCNN consists of the scheduled
task and the ratio of the scheduled task and number of requests made by the IoT devices,
that is rewritten as given below:

1
()

n
ii

In AE ST
=

= (11)

()
1

() , where
n i

i i i i i

STIn FCNN ST In In
Req=

= ∪ = (12)

The output of AE is the union of the scheduled task and the ratio of scheduled task to the
requests made. Finally, the output of FCNN is written as given below with the
consideration of the energy consumption ‘ ’cloud

jE and transmission delay ‘TDij’.

()
1
()

n cloud
ijji

Out In E TD
=

= (13)

The pseudo code representation of deep resource allocator is given below:
Algorithm 2 Deep resource allocator

Input: IoT devices ‘D = D1, D2, …, Dn’, Cloud Service Provider ‘CSP = CSP1, CSP2, …, CSPn’,
Task Scheduler ‘TS = TS1, TS2, …, TSn’
Output: Improved throughput
1: Begin
2: Initialise scheduled tasks ‘ST’
3: For each IoT devices ‘D’ and Cloud Service Provider ‘CSP’
4: Evaluate encode and decode function for AE using (7) and (8)
5: Measure activation function based on energy consumption and transmission

delay using (9) and (10)
6: Obtain input for AE and FCNN using (11) and (12)
7: Measure output for FCNN using (13)
8: Return (optimal resource allocation)
9: End for
10: End

As given in the above algorithm, for each IoT devices and cloud service provider as
input, the scheduled tasks arrived is first initialised. Next, with the objective of improving
the throughput, a deep resource allocator algorithm, considering both AE and FCNN is
utilised that in addition to the conventional model also utilises the energy consumption
and transmission delay into consideration for managing the resources to fulfil the requests
generated by the IoT devices in a timely manner.

 72 S. Arun and S. Rajan

4 Implementation and analysis

In this section, the numerical experiments results are presented to examine the efficiency
of storage and resource allocation as well as comparing our method performance with
other methods in terms of bandwidth utilisation, task response time and throughput to
allocate the resources to user smart devices via task scheduler and cloud server. The
comparison method uses IoT-aware multi-resource task scheduling (Lin et al., 2019) and
deadline and cost-aware genetic algorithm (DCGA) (Ma et al., 2019) towards resource
scheduling via task scheduler using active personal cloud measurement obtained from
Personal Cloud Datasets, NEC Personal Cloud Trace (Gracia-Tinedo et al., 2013).

4.1 Experiment settings

The characteristics of our target system are illustrated in Table 1. In our PC, one Intel
CoreTM i7 965 and 8 GB RAM is used. The proposed method was simulated on
CloudSim (https://code.google.com/p/cloudsim/downloads/list), a framework specifically
utilised for modelling and simulation of infrastructures and services in Java.
Table 1 Characteristic of the target system

Parameter Value
Network LAN
Topology Connected
Number of smart devices 10
Bandwidth 10 – 512 Mbps

4.2 Comparative analysis of bandwidth utilisation

Bandwidth utilisation refers to the data rate (i.e., for each IoT device) that is supported by
the network connection (i.e., cloud server) or the interfaces that connect to the network.
Bandwidth utilisation denotes both the volume and time. In other words, it refers to the
amount or frequency of data that are said to be transmitted between two ends in a
stipulated time period and expressed in terms of bits per second (b/s) or kilo bits per
second (Kb/s). This is mathematically formulated as given below:

_
_

Avg DBU D
Avail NBW

= ∗ (14)

From equation (14), the bandwidth utilisation ‘BU’ is measured based on the average
utilisation required by specific application (i.e., IoT devices) ‘Avg_D’, available network
bandwidth ‘Avail_NBW’ and the number of IoT device’s request ‘D’ respectively.
Table 2 shows the comparative analytical representation results of bandwidth utilisation
for three different methods, TFTS-DRA, IoT-aware multi-resource task scheduling (Lin
et al., 2019) and DCGA (Ma et al., 2019).

 An IoT-based two-factor divide and conquer task scheduler 73

Table 2 Comparative results of TFTS-DRA, IoT-aware multi-resource task scheduling (Lin
et al., 2019) and DCGA (Ma et al., 2019)

Number of IoT
devices

Bandwidth utilisation (Mb/s)

TFTS-DRA IoT-aware multi-resource
task scheduling DCGA

25 500 400 300
50 600 450 350
75 700 530 420
100 900 620 500
125 1,200 750 630
150 1,300 900 840
175 1,400 1,200 990
200 1,800 1,400 1,200
225 1,850 1,550 1,450
250 2,000 1,700 1,650

Figure 5 Bandwidth utilisation comparisons (see online version for colours)

Figure 5 shows the comparative analysis results of bandwidth utilisation for three
different methods, TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et al.,
2019) and DCGA (Ma et al., 2019). From the figure it is inferred that increasing the
number of IoT devices cause an increase in the bandwidth utilisation. It is evident from
the simulation experiments conducted with the requests of the numbers of IoT devices.
With the assumed available network bandwidth being ‘250 Kb/s’, average utilisation by
specific IoT device for TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et al.,
2019) and DCGA (Ma et al., 2019) were found to be ‘125 Kb/s’, ‘100 Kb/s’ and
‘75 Kb/s’ respectively.

From this it is inferred that the bandwidth utilisation was found to be better when
applied with TFTS-DRA. This is due to the application of two-factor divide-and-conquer
dependent task scheduler algorithm. By applying this algorithm, two different factors,

 74 S. Arun and S. Rajan

like, average computation cost and average communication time were considered during
the scheduling of tasks. With this, the average utilisation required by the IoT devices
were said to be satisfied with the aid of TFTS-DRA and therefore improving the
bandwidth utilisation by 32% compared to Lin et al. (2019) and 5% compared to Ma
et al. (2019).

4.3 Comparative analysis of task response time

The task response time refers to the time consumed in responding to the IoT devices’
tasks. Higher the number of tasks being requested by the IoT device, greater is the task
response time. This is mathematically evaluated as given below:

1
[]

n
time ii

TR D Time TR TFT TET
=

= ∗ = − (15)

From equation (15), the task response time is measured based on the IoT devices’
requests ‘Di’ being placed in the cloud server and the time consumed in responding the
task ‘TIME[TR]’, which is the difference between the task finishing time ‘TFT’ and task
establishment time ‘TET’ respectively. Table 3 shows the comparative analytical
representation results of average task response time for three different methods,
TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et al., 2019) and DCGA (Ma
et al., 2019).
Table 3 Comparative results of TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et

al., 2019) and DCGA (Ma et al., 2019)

Number of IoT
devices

Task response time (ms)

TFTS-DRA IoT-aware multi-resource
task scheduling DCGA

25 3.375 4.625 5.375
50 5.325 7.135 8.235
75 7.855 10.255 12.445
100 9.325 11.355 13.355
125 10.155 13.455 16.352
150 11.235 15.675 19.255
175 13.555 18.355 21.355
200 15.895 19.235 24.555
225 18.325 21.225 29.355
250 20.455 22.355 33.325

Figure 6 given above shows the response time comparison in the y axis and number of
IoT devices’ requests placed by IoT devices in the cloud server in the x axis. The number
of IoT devices is varied in the range of 25 to 250 with an average 10 simulation run at
different time intervals. Increasing the number of IoT devices requests in the cloud server
obviously results in the large number of tasks to be scheduled by the cloud server in
cloud computing environment. This is evident from the simulation with ‘15’ IoT devices
request placed in the cloud server, the tasks response time for scheduling single IoT

 An IoT-based two-factor divide and conquer task scheduler 75

device using TFTS-DRA was found to be ‘0.135 ms’, ‘0.185 ms’ using (Lin et al., 2019)
and ‘0.215 ms’ using (Ma et al., 2019) respectively.

Figure 6 Task response time comparisons (see online version for colours)

From these results it is inferred that the average task response time is comparatively
lesser using TFTS-DRA when compared to Lin et al. (2019) and Ma et al. (2019). This is
because of the application of cost and time-based divide and conquer task scheduling
model. By applying this model, the IoT devices’ tasks to be scheduled are partitioned into
smaller elements and the elements are scheduled optimally via two cost and time factors.
Besides, the IoT devices’ request to be accommodated on idle time slots (ITS), the task
establishment time ‘TET’ and task finishing time ‘TFT’ are defined. With this, the
average task response time with TFTS-DRA is said to be reduced by 21% compared to
Lin et al. (2019) and 37% compared to Ma et al. (2019).

4.4 Comparative analysis of throughput

Finally, the throughput refers to the percentage ratio of IoT devices’ request of task
addressed with the required resources ‘Diaddressed’ to the IoT devices’ request placed in
the cloud server ‘Direquest place’.

100i

i

D addressedT
D request placed

= ∗ (16)

From equation (16), with higher number of devices’ tasks being allocated with the
required resources, more efficient the method is said to be and is measured in terms of
percentage (%). Table 4 shows the comparative analytical representation results of
throughput rate for three different methods, TFTS-DRA, IoT-aware multi-resource task
scheduling (Lin et al., 2019) and DCGA (Ma et al., 2019).

Figure 7 shows the comparative result analysis of throughput rate for three different
methods. As illustrated in the above figure, increasing the IoT devices results in larger
number of IoT devices requests for allocating the scheduling tasks and therefore larger
number of requests being handled to allocation in an optimal manner, the throughput

 76 S. Arun and S. Rajan

obviously will get reduced. However, from the figure it is inferred that the throughput
rate using the proposed method is less compared to the Lin et al. (2019) and Ma et al.
(2019). This is because of the application of deep resource allocator algorithm. In this
algorithm, both the auto encoder and fully connected neural network are considered.
Besides, the activation function is generated based on the cloud energy consumption and
transmission delay. With this, resource allocation for the scheduled task is made only
based on energy being consumed and the delay incurred during transmission. By
considering all these factors, the throughput rate using TFTS-DRA is improved by 8%
when compared to Lin et al. (2019) and 11% when compared to Ma et al. (2019).
Table 4 Comparative results of TFTS-DRA, IoT-aware multi-resource task scheduling (Lin et

al., 2019) and DCGA (Ma et al., 2019)

Number of IoT
devices

Throughput (%)

TFTS-DRA IoT-aware multi-resource
task scheduling DCGA

25 92 84 80
50 91.35 82.15 78.15
75 90.25 81.35 78
100 90 80 77.35
125 88.15 81.35 77.15
150 86.35 80.25 77
175 84 78.35 76.95
200 82.15 77.15 76.85
225 80 77.06 76.75
250 80 77.02 76.77

Figure 7 Throughput rate comparisons (see online version for colours)

 An IoT-based two-factor divide and conquer task scheduler 77

5 Conclusions

In this paper, we have focused on ensuring the quality of service in terms of bandwidth
utilisation, task response time and throughput for end users by efficiently allocating the
available resources to IoT-based applications in cloud environment. Therefore, we have
proposed a two-factor-based resource allocator model that is scalable and well applicable
to the cloud computing environment. Unlike traditional resource allocation models for
IoT, we have efficiently mapped the resources to the IoT applications by considering
computation cost and communication time for the IoT applications. In addition, we have
investigated the throughput rate by means of combining the auto encoder and fully
connected neural network on the outcomes of the scheduled tasks through extensive
analysis. The simulation results show that, the proposed method is able to address task
response time and bandwidth utilisation and we have observed significant performance
gains compared to the other traditional IoT-based resource allocation methods for cloud
computing environment.

References
Abedin, S.F., Alam, M.G.R., Kazmi, S.M.A., Tran, N.H., Niyato, D. and Hong, C.S. (2019)

‘Resource allocation for ultra-reliable and enhanced mobile broadband IoT applications in fog
network’, IEEE Transactions on Communications, January, Vol. 67, No. 1, pp.489–502.

Abuzainab, N., Saad, W., Hong, C.S. and Poor, H.V. (2017) ‘Cognitive hierarchy theory for
distributed resource allocation in the internet of things’, IEEE Transactions on Wireless
Communications, December, Vol. 16, No. 12, pp.7687–7702.

Alsaffar, A.A., Pham, H.P., Hong, C-S., Huh, E-N. and Aazam, M. (2016) ‘An Architecture of IoT
service delegation and resource allocation based on collaboration between fog and cloud
computing’, Mobile Information Systems, August, Vol. 2016, pp.1–16, Hindawi Publishing
Corporation.

Al-Turjman, F., Hasan, M.Z. and Al-Rizzo, H. (2018) ‘Task scheduling in cloud‐based
survivability applications using swarm optimization in IoT’, Transaction on Emerging
Telecommunication Technologies, November, Vol. 30, No. 8, pp.1–20, Wiley Online Library.

Al-Zoubi, K. and Wainer, G. (2019) ‘Fog and cloud collaboration to perform virtual simulation
experiments’, Simulation Modelling Practice and Theory, October, Vol. 101, pp.1–20,
Elsevier.

Basu, S., Karuppiah, M., Selvakumar, K., Li, K-C., Islam, S.K.H., Hassan, M.M. and
Bhuiyan, M.Z.A. (2018) ‘An intelligent/cognitive model of task scheduling for IoT
applications in cloud computing environment’, Future Generation Computer Systems,
November, Vol. 88, pp.254–261, Elsevier.

Ben Daoud, W., Obaidat, M.S., Meddeb-Makhlouf, A., Zarai, F. and Hsiao, K-F. (2019) ‘TACRM:
trust access control and resource management mechanism in fog computing’, Human-centric
Computing and Information Sciences, July, Vol. 9, No. 28, pp.1–18, Springer Open.

Bose, S., Sarkar, D. and Mukherjee, N. (2019) ‘A framework for heterogeneous resource allocation
in sensor-cloud environment’, Wireless Personal Communications, April, Vol. 108, pp.19–36,
Springer.

Choi, Y. and Lim, Y. (2016) ‘Optimization approach for resource allocation on cloud computing
for IoT’, International Journal of Distributed Sensor Networks, January, Vol. 2016, pp.1–6,
Hindawi.

Choksi, M. and Zaver, M.A. (2019) ‘Multiobjective based resource allocation and scheduling for
postdisaster management using IoT’, Wireless Communications and Mobile Computing,
March, Wiley, Vol. 2019, pp.1–16.

 78 S. Arun and S. Rajan

CloudSim, A Framework for Modeling and Simulation of Cloud Computing Infrastructure and
Services [online] https://code.google.com/p/cloudsim/downloads/list.

Gaia, K. and Qiub, M. (2018) ‘Optimal resource allocation using reinforcement learning for IoT
content-centric services’, Applied Soft Computing, May, Vol. 70, pp.12–21, Elsevier.

Gracia-Tinedo, R., Sánchez Artigas, M., Moreno-Martínez, A., Cotes, C. and López, P.G. (2013)
‘Actively measuring personal cloud storage’, 6th IEEE International Conference on Cloud
Computing (Cloud’13), 27 June–2 July, pp.301–308.

Gu, Y., Chang, Z., Pan, M., Song, L. and Han, Z. (2018) ‘Joint Radio and computational resource
allocation in IoT fog computing’, IEEE Transactions on Vehicular Technology, August,
Vol. 67, No. 8, pp.7475–7484.

Hassan, M.M., Albakri, H., Al-Dossari, H. and Mohamed, A. (2017) ‘Resource provisioning for
cloud-assisted body area network in a smart home environment’, IEEE Access, July, Vol. 5,
pp.13213–13224.

Li, Z., Yang, Z. and Xie, S. (2017) ‘Computing resource trading for edge-cloud-assisted internet of
things’, IEEE Transactions on Wireless Communications, December, Vol. 16, No. 12,
pp.3661–3669.

Liao, H., Zhou, Z., Zhao, X., Zhang, L., Mumtaz, S., Jolfaei, A., Ahmed, S.H. and Bashir, A.K.
(2019) ‘Learning-based context-aware resource allocation for edge computing-empowered
industrial IoT’, IEEE Internet of Things Journal, December, Vol. 7, No. 5, pp.4260–4277.

Lin, W., Peng, G., Bian, X., Xu, S., Chang, V. and Li, Y. (2019) ‘Scheduling algorithms for
heterogeneous cloud environment: main resource load balancing algorithm and time balancing
algorithm’, Journal of Grid Computing, November, Vol. 17, pp.699–726.

Ma, X., Gao, H., Xu, H. and Bian, M. (2019) ‘An IoT-based task scheduling optimization scheme
considering the deadline and cost aware scientific workflow for cloud computing’, EURASIP
Journal on Wireless Communications and Networking, July, Vol. 249, pp.1–19, Springer.

Preethi, M. and Jayavel, K. (2018) ‘IoT based visualization of weightage based static task
scheduling algorithm in datacenter’, International Journal of Engineering and Technology,
Vol. 7, No. 2, pp.439–443, Science Publishing Corporation.

Reddy, D.A. and Krishna, P.V. (2020) ‘Feedback-based fuzzy resource management in IoT using
fog computing’, Evolutionary Intelligence, March, pp1–13, Springer.

Sun, H., Yu, H., Fan, G. and Chen, L. (2019) ‘Energy and time efficient task offloading and
resource allocation on the generic IoT-fog-cloud architecture’, Peer-to-Peer Networking and
Applications, July, Vol. 13, pp.548–563, Springer.

The, A.T., Thanh, B.H.T., Bao, S.D. and Minh, N.B. (2019) ‘Evolutionary algorithms to optimize
task scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing
environment’, Applied Sciences, Vol. 9, No. 9, pp.1–20.

Ud Din, I., Guizan, M., Hassan, S., Kim, B-S., Khan, M.K., Atiquzzaman, M., Ahmed, S.H. (2019)
‘The internet of things: a review of enabled technologies and future challenges’, IEEE Access,
January, Vol. 7, pp.7606–7640.

Yu, W., Liangi, F., He, X., Hatcher, W.G., Lu, C., Lin, J. and Yang, X. (2018) ‘A survey on the
edge computing for the internet of things’, IEEE Access, March, Vol. 6, pp.6900–6919.

Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, R. and Han, Z. (2017) ‘Computing resource allocation
in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and
matching’, IEEE Internet of Things Journal, October, Vol. 4, No. 5, pp.1204–1215.

 An IoT-based two-factor divide and conquer task scheduler 79

Nomenclatures

List of symbols Description
D = D1, D2, …, Dn Set of IoT devices
CSP = CSP1, CSP2, …, CSPn Cloud service providers
Datasize Data size
Sdelay Service delay
TS = TS1, TS2, …, TSn Task scheduler

1 2{ , , , }j j jj
iTS ts ts ts=  Task scheduler selection

1 2, , ,j j jj
mBW bw bw bw=  Bandwidth

1 2, , ,j j jj
nCPU cpu cpu cpu=  CPU clock speed

{(,)| , }j j j jj j j
n n m nRD bw cpu bw BW cpu CPU= ∈ ∈ Resource duality sets

TET(Di) Task establishment time
TFT(Di) Task finishing time
ACC Average computation cost
ACT Average computation time
n Number of tasks
ti Task
Pn Processor
Prec(ti) Arrival time of parent task
EF(.) Encode function
DF(.) Decode function
WME(.) Weight matrix of encode function
WMD Weight matrix of decode function
BE(.) Bias of encode function
BD(.) Bias of decode function
Nj Number of turned on machines
Bn Bias for neurons in ‘nth’ layer
E(Dj) Each device energy consumption value
dij Delay of IoT device transmission path
λij Traffic arrival rate

cloud
jE Energy consumption

TDij Transmission delay
BU Bandwidth utilisation
Avg_D Average bandwidth utilisation by IoT

devices
Avail_NBW Available network bandwidth
Time[TR] Time consumed in responding tasks
Di addressed IoT device request of task addressed with

required resources
Di request placed IoT devices request placed

	Untitled

