Cutting fluid aerosol generation in near-dry turning
by Kuan-Ming Li, Steven Y. Liang
International Journal of Manufacturing Research (IJMR), Vol. 1, No. 3, 2006

Abstract: The generation of aerosol using the cutting fluids in machining processes presents a concern from the standpoint of pollution to the environment. Near-dry machining, as a method of applying only a minute amount of cutting fluid, has been developed to address the air quality issue. This paper presents the establishment of an analytical method to quantitatively predict the air quality in the near-dry turning operation. The analytical prediction is based on the modelling of cutting temperature, aerosol generation mechanism and spatial and temporal diffusion. The cutting temperature model is obtained by considering moving and stationary heat sources in the cutting tool. The aerosol generation mechanism model contains two primary parts: the evaporation mechanism due to high temperature in the cutting zone and the air blast splash mechanism due to the kinetic energy of the air–fluid mixture under the near-dry condition. The diffusion model provides the calculation of the aerosol concentration at a distance from the cutting zone as a function of time due to the concentration gradient. The calibration and validation of the model have been performed experimentally with the use of light-scattering particle counting under various cutting conditions. Results show that the model agrees well with the measurements and that, under normal cutting conditions, the cutting fluid flow rate is the dominant factor for the aerosol generation rate.

Online publication date: Thu, 04-Jan-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com