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Abstract: This study develops an effective stochastic gradient descent (SGD) 
and time with exponential decay (TED)-based learning rate scheduler called 
SGD-TED model for deep learning-based healthcare diagnosis. The presented 
SGD-TED model involves pre-processing, classification, SGD-based parameter 
tuning and TED-based learning rate scheduling. Once the data is pre-processed, 
three DL models namely recurrent neural network (RNN), long short-term 
memory (LSTM) and gated recurrent unit (GRU) are used for diagnosis. Then, 
the hyperparameter tuning takes place by SGD and TED is applied to schedule 
the learning rate proficiently. The application of SGD-TED approach in the DL 
models considerably helps to increase the classification performance. The 
effectiveness of the SGD-TED model is assessed on three benchmark medical 
dataset and the experimental outcome ensured that the SGD-TED-LSTM model 
has resulted to a higher accuracy of 98.59%, 93.68% and 95.20% on the 
applied diabetes, EEG Eye State and sleep stage dataset. 
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1 Introduction 

Recently, healthcare sector is one of the most important fields in bio-medicinal data. For 
example, precision medicine aims to provide the correct treatment for the patient as soon 
as it is needed under different features of patient’s information, like living habits, 
electronic health record (EHR), atmosphere and variations in molecular tests. The 
substantial availability of bio-medicinal data has the tendency to create high challenges in 
the healthcare studies. Besides, searching the relation among other data sets has turned 
into the fundamental problem of deploying secure medicinal gadgets based on database 
technique and machine learning (ML). For the purpose of attaining the high performance, 
a variety of conventional techniques are tried to link huge data sources for developing 
joint knowledge databases that may be used in prediction tasks and identification (Xu  
et al., 2014). Although the earlier techniques represent the crucial problems, prognostic 
gadgets related on ML techniques have exploited the medicinal sources (Bellazzi and 
Zupan, 2008). 

Clearly, the whole utilisation of bio-medicinal data is treated as a most difficult 
features which likely to have irregularities, temporary dependencies, heterogeneities, 
sparsity and high dimensionalities (Hripcsak and Albers, 2013). Therefore, these 
challenges are the reason for further complexity along with various medicinal ontologies 
and it is mostly used for data generalisation like International Classification of  
Disease-9th version (ICD-9), unified medical language system (UMLS), systematised 
nomenclature of medicine-clinical terms (SNOMED-CT). Traditional data mining and 
statistical learning methods commonly required to carry out the feature engineering for 
obtaining proficient and robust features from those data, and then build prediction or 
clustering models on top of them. There are lots of challenges on both steps in a scenario 
of complicated data and lacking of sufficient domain knowledge. The recent 
developments in the deep learning (DL) approaches offer effective way of obtaining  
end-to-end learning models from complex healthcare data. Several aspects of DL find 
useful in healthcare domain namely improved performance, end to end learning scheme 
with integrated feature learning, ability of managing complex and multi-modality data, 
etc. Deep models permit the discovery of high-level features, improving performances 
over traditional models, increasing interpretability and providing additional 
understanding about the structure of the biological data. 

The most important intention of bio-medicinal researches is to attain a medical expert 
for phenotypes requirements which is used in an ad hoc manner. However, supervised 
depiction of a feature space scale in a very bad fashion and quits the possibility to locate 
novel pattern. Then, learning techniques can able to explore illustrations which are 
mandatory for real data prediction (Domhan et al., 2015). DL methods are defined as 
representation-learning models with various stages, but nonlinear technique that change 
the representations at every stage into a representation at high abstraction stage 
(Schmidhuber, 2015; Leung and Haykin, 1991). DL techniques have the possibility in 
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processing better efficiency particularly in the application of natural language processing 
operation, audio prediction and also computer vision. 

According to various applications and continuous development in technical 
enrichment, DL model launches new prospects in the bio-medicinal data. The laborious 
work is utilised in DL parts for healthcare was defined already. For example, Google 
DeepMind has developed many methods to utilise the knowledge of the professionals in 
healthcare and has been utilised through DL intelligence to indicate issues on X-rays and 
computed tomography (CT) scanner (Enlitic Uses Deep Learning to Make Doctors Faster 
and More Accurate, 2016). Thus, DL technique was marginally applied to a wide series 
of medicinal issues that attains the advantage of these problems. There are numerous 
reasons allied to DL which might be relevant in healthcare such as, qualified 
performance, effective complexity management, end-to-end learning with integrated 
feature learning, multimodality data, etc. For the effective results, the DL research 
considered the difficulties concerned in healthcare data and that is essential for 
betterment of techniques and implementations. It stimulates DL as an interface with 
healthcare data flows and disease diagnosis models. 

At the same time, smart medicinal informatics models, such as Philips’ CareVue 
system, accumulate the details of patients in relational databases for data management 
purpose. Doctors often derive equivalent medicinal storages for an ICU patient which is 
intended for decision making processes. A famous and broadly used disease code model 
is referred as ICD and commonly planned by World Health Organisation (WHO). The 
extended technique is ICD-10 which is used with local medical adjustments in several 
fields, for example, ICD-10-AM for Australia. The major intention of ICD is to extend a 
limited hierarchical classifier technique that has been evolved to record health condition 
in different class labels. In the USA, the ninth version of ICD9 is utilised in diverse areas 
for classifier tasks. For example, an ICU patient will be merged with a file of ICD9 codes 
in medical record like disease observation, pathology, or clinical data management. From 
the observations of past data, caretaker is needed to give a better treatment for the patient. 
So, absolute and accurate disease prediction is an essential task. 

During the training process of DL, it is mainly needed to minimise the learning rate as 
the training process gets continued. It can be carried out by the use of pre-defined 
learning rate schedules or adaptive learning rate models. This paper follows the learning 
rate schedules type, which modifies the learning rate at the time of training through the 
minimisation of learning rate based on a predefined schedule. To achieve this goal, this 
paper designs a novel stochastic gradient descent (SGD) with time with exponential 
decay (TED)-based learning rate scheduler called SGD-TED model for DL-based 
healthcare diagnosis. The presented SGD-TED model undergoes four processes namely 
pre-processing, classification [recurrent neural network (RNN), long short-term memory 
(LSTM) and gated recurrent unit (GRU)], SGD-based parameter tuning and TED-based 
learning rate scheduling. When the data pre-processing gets completed, the 
hyperparameter tuning of the DL models takes place by SGD and the TED is applied to 
schedule the learning rate proficiently. The application of SGD-TED approach in the DL 
models considerably helps to increase the classification performance. A brief set of 
experimental validation takes place on benchmark medical dataset and the results are 
discussed under different dimensions. 
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2 Related works 

In recent times, DL method is mainly applied for computing the accumulated EHRs, like 
structured models such as disease analysis, treatments; lab tests whereas unstructured 
modules like medical notes. The majority works of EHRs in medical domain is operated 
using deep structure, supervised, and predictive tasks. Specifically, a typical approach 
depicts that DL reaches best results than traditional ML methods with respect to specific 
parameters, such as area under the receiver operating characteristic curve, accuracy and 
F-score (Manning et al., 2008). Here, massive studies define the end-to-end supervised 
system, and only some modules are unsupervised networks. It accelerates latent patient 
depictions, which are evaluated using shallow classifiers namely, random forests (RF), 
logistic regression (LR). 

Many works have been applied with DL model for diagnosing the disease according 
to the health state of a patient (Cheng et al., 2016) which applied a four-layer 
convolutional neural network (CNN) to predict the congestive heart disease (CHD) and 
chronic obstructive pulmonary disease and implied significant benefits over the baselines. 
RNNs with LSTM were employed in DeepCare system that examines the future medical 
records. In addition, developers have established an LSTM unit followed by a degrading 
effect to manage irregular events. Moreover, it is incorporated with clinical inventions to 
form the predications dynamically. Deep care is estimated for disease progression 
labelling, invention and future predictive risks prediction on diabetes as well as physical 
health. RNNs and GRU were utilised by Choi et al. (2016) to design doctor AI, an  
end-to-end method which applies patient records for disease diagnosis and preferred 
treatment has to be consumed. Such calculations demonstrate a vital recall measure when 
compared with shallow baselines and optimal normalisation with the help of consequent 
approach without any loss of accuracy. 

Miotto et al. (2016) deployed a model to learn deep patient implications from EHRs 
by applying three-layer stacked denoising autoencoder (SDA). Furthermore, it is applied 
with a novel depiction on detecting the risk aspects with the help of RF classifier. The 
simulation outcome shows that, deep representation leads to generate a significant 
prediction than using actual EHRs such as principal component analysis (PCA), and  
k-means. Additionally, it demonstrates that, the achieved outcomes improve the addition 
of LR layer on top of AE to fine-tune the entire supervised system. Similarly, Liang et al. 
(2014) used RBMs to learn representations from EHRs that tends to develop novel 
methods and illustrated best prediction accuracy even under massive disease classes. 

Moreover, DL was applied in frequent time signals, such as, lab results, which has to 
identify specific phenotypes automatically. Lipton et al. (2015) employed NNs with 
LSTM for pattern analysis from multivariate time sequence of clinical values. 
Specifically, the training has been offered for classifying massive cases; however 
irregular samples of medical values of patients in ICU. Thus, the obtained results states 
that improvement with respect to diverse robust baselines, like multilayer perceptron 
(MLP) is trained on hand-based features. Che et al. (2015) deployed SDAs normalised 
with a prior knowledge on the basis of ICD-9s that is widely applied in predicting 
medical patterns. Lasko et al. (2013) developed a two-layer SAE for the establishment of 
longitudinal series of serum uric acid values to classify the uric-acid signatures of gout 
and acute leukemia. 

Razavian et al. (2016) evaluated CNNs as well as RNNs with LSTM units to detect 
the disease onset from lab test values, and depicted best working functions than LR and 
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hand-crafted features, medical relied features. Neural language deep models were 
employed in EHRs, to learn incorporated presentations of medical objectives such as 
diseases, remedies, lab tests, and so on. It is utilised in predicting the existence of a 
disease. Tran et al. (2015) presented RBMs for learning abstractions of ICD-10 codes on 
physical health patients for detecting the risk of a suicide attempt. A deep structure 
depends upon RNNs that accomplishes best outcome for eliminating secured health data 
from medical notes to limit the automatic re-identification of free-text patient values. The 
examination of unknown patient re-admissions. Additionally, Wickramasinghe (2015) 
projected Deepr, dedicated structure is based on CNNs which detects and combines 
clinical motifs in longitudinal patient EHRs to solve the medical risks. Deepr functions 
perform better in predicting readmission within a specific time interval and able to 
predict applicable and interpretable clinical patterns. 

3 The proposed SGD-TED model 

The working process involved in the presented SGD-TED model is shown in Figure 1. 
As depicted, the medical data is initially collected and pre-processed into a proper format. 
Then, the SGD-TED model is applied to the DL models such as RNN, GRU and LSTM 
to find the appropriate hyper parameters and learning rate. Finally, a set of performance 
measures are used to investigate the classifier results of the SGD-TED model in terms of 
precision, recall, accuracy, F-score and kappa. 

3.1 Pre-processing 

Data pre-processing includes the process of transforming the original input data into a 
comprehensible format. As the real-time data is incomplete and consist of missing values, 
there is a maximum possibility of having errors. Thus, data pre-processing is used for 
data conversion that is from actual point to proper format which has to be applicable for 
next processing. In this approach, pre-processing is carried out in two phases such as 
format conversion as well as data transformation. Initially, format conversion process 
takes place where the data is in any kind of format is changed into .csv format. Secondly, 
data transformation is computed and it has diverse sub-processes as shown in the 
following. 

• Normalisation: it processed the data scaling from the range of (–1.0 to 1.0 or 0.0 to 
1.0). 

• Attribute selection: a subset of parameters was chosen from the given collection of 
attributes for mining the task. 

• Discretisation: actual values of mathematical attributes would be replaced by 
interval or conceptual levels. 

3.2 Classification process 

RNN, LSTM, and GRU are the popular DL models widely employed for classification 
process. The RNN is a layered NN where the output activation from one or multiple 
layers of the network is used. It considers that the inputs are not dependent on one 
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another and find useful if the inputs are sequential. Though RNN is effective, it suffers 
from vanishing gradient problem that prevents them from the use of long term data. To 
resolve this problem, improved versions of RNN called LSTM and GRU are designed. 
They have the ability to remember long term dependencies. The architecture of both 
LSTM and GRU cells are mainly based on the fundamental RNN cell. The LSTM and 
GRU models are designed to retain data for longer duration with no need of dealing with 
the vanishing gradient problem. They have internal mechanism termed as gates which 
controls the data flows. These gates can learn which data in a sequence is important to 
keep or throw away. Thus, it can pass relevant information down the long chain of 
sequences to make predictions. Besides, the major difference between GRU and LSTM is 
that GRU’s includes two gates namely reset and update whereas LSTM has three gates 
such as input, output, forget. Therefore, GRU is less complex than LSTM because it has 
few gates. If the dataset is small then GRU is preferred otherwise LSTM for the larger 
dataset. The detailed working of these three DL models is given in the following 
subsections. 

Figure 1 Work flow of SGD-TED model (see online version for colours) 

 

3.2.1 RNN-based classification model 
RNN comes under the NN in which results from previous step is provided as input to the 
further step. For traditional NN, each input and output is independent; but, the data 
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analysis is carried out with the help of existing data and without storing the previous 
information. Thus, RNN is applied for solving the issues using hidden layer. The standard 
feature of RNN is a hidden state which records data about the sequence. RNN contains a 
‘memory’ which saves all data which has to be estimated. It uses same parameters for 
each input as it computes the same operation on hidden layers and generates best 
outcome. At last, the complexity of parameters was limited. Hence, NN process the given 
operation: 

• RNN converts the independent activations for dependent actions by providing same 
weights and biases for every layers, and reduce the parameter complexity and 
memorise all existing results by giving the result as input to upcoming hidden layer. 

• Therefore, three layers were integrated where weights and bias of all hidden layers 
are similar, which develops individual recurrent layer. 

3.2.2 LSTM-based classification process 
LSTM has been developed for handling the prolonged term dependency which does not 
develop vanishing gradient problem as the fact that the LSTM exploits memory cell state 
to process the data for longer duration. The cell state is highly applicable to process data 
even the information is not applied for prolonged time. The LSTM is composed of three 
gates namely, forget, update and reset gates. Both input and output gate manages the 
access CEC control. During the training process, the input gate is learned and allows 
novel data within the CEC. While the input gate is 0, no data is linked. Similarly, the 
output gate is learned and enables the data from CEC. When the gates are closed, data 
gets terminated inside a memory cell. It activates the error signals to flow over several 
time steps with no assumption of vanishing gradients. 

The LSTM outperforms than RNN at the time of learning long-range dependency. 
This method is ineffective in data sequence. The LSTM condition is not arranged when 
the input stream is detached externally into sized sequences. In particular, the LSTM 
knows to reset the memory cell as it completes the sequence and enters into novel 
sequence. In order to resolve the issue, LSTM structure with forget gates has been 
deployed. The architectural diagrams of LSTM unit with forget gates are defined in the 
following: 

• Input: the LSTM unit uses recent input vector denoted by xt and shows the time step 
as ht−1. The weighted inputs are summarised and passed by tanh activation which 
provides in zt. 

• Input gate: it reads xt and ht−1, determines the weighted sum, and applies sigmoid 
activation. The final outcome is enhanced with zt, for providing input flow of a 
memory cell. 

• Forget gate: it is worked by an LSTM unit that resets memory data when they are 
expired and irregular. It exists when the system begins to process a new series. The 
forget gate reads xt and ht−1 and applies a sigmoid activation for weighted inputs. The 
results, ft are enhanced with the help of a cell state at existing time step st−1 that 
enables to forget the memory data which is unwanted. 
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• Memory cell: it is constrained with CEC, and a recurrent edge as well as unit weight. 
The current cell state st is estimated to forget irregular data from earlier time step and 
ensures relevant data from current input. 

• Output gate: it applies a weighted sum of xt and ht−1 and uses sigmoid activation to 
manage the data flow from LSTM unit. 

• Output: the result of LSTM unit ht, is determined by converting a cell state st by a 
tanh and enhance with output gate, ot. The function of LSTM unit is represented as 
given in the following: 

( )1tanh + + ( )z z z
t t tz W x R h b input−=  (1) 

( )1+ + ( )i i i
t t ti σ W x R h b inputgate−=  (2) 

( )1+ + ( )f f f
t t tf σ W x R h b forgetgate−=  (3) 

( )1+ + ( )o o o
t t to σ W x R h b outputgate−=  (4) 

1+ ( )t t t t ts z i s f cellstate−=    (5) 

( )tanh ( )t t th s o output=   (6) 

3.2.3 GRU-based classification model 
The vanishing-exploding gradients problems can be resolved under the application of 
RNN. The main approach is LSTM. A method with lower popularity but higher 
productive difference is termed as GRU. Dissimilar to LSTM, it contains three gates that 
does not sustain the internal cell state. The data stored in internal cell state in an LSTM 
recurrent unit is incorporated in hidden state of GRU. The gathered data is offered to the 
upcoming GRU. The gates of a GRU are defined as follows: 

• Update gate (z): it process the existing knowledge which has to be induced to next 
processing. It is analogous to output gate in LSTM recurrent unit. 

• Reset gate (r): it calculated the previous knowledge that has to be removed. It is 
analogous to the combination of input gate and forget gate from LSTM recurrent 
unit. 

• Current memory gate ( ) :th  it is highly used for GRU process. It is integrated into 
reset gate with input modulation gate is a sub part of input gate and used for 
developing nonlinearity into input and make input zero-mean. An alternative for 
creating a sub-part of reset gate is to restrict the impact of previous data on current 
data that is used for upcoming process. 

The basic operation of GRU is combined with RNN with few differences among two 
methods. The interior computation of GRU contains gates which change the present input 
and previous hidden state. The performance of GRU is defined in the following. At the 
initial phase, the input as recent input and previous hidden state are named as vectors. 
Followed by, the vales of three diverse gates are determined in the following: 
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• For every gate, compute the parameterised input and existing hidden state vectors by 
the computation of element-wise multiplication over the considered vector and 
corresponding weights. 

• Apply the concerned activation function for gate element-wise on parameterised 
vectors. The list of gates is offered using the activation function. 

3.3 Stochastic gradient descent 

DL model has been trained with the application of SGD method. It is defined as an 
optimisation technique which evaluates the error gradient for recent state of an approach 
under the employment of training dataset, and upgrades the weights of the model by 
applying back-propagation (BP) of errors algorithm which is named as BP model. 
Consider a simple supervised learning procedure. Every instance z is a pair (x, y) which is 
enclosed with random input x as well as a scalar y. Suppose a loss function ˆ( , )l y y  
calculates the prediction cost ŷ  when the original answer is y and select a family F of 
functions fw(x) is parameterised using a weight vector w. Here, the function f ∈ F which 
reduces the loss Q(z, w) = l(fw(x), y) averaged on the samples. Though the unknown 
distribution dP(z) is maximised which embeds the Laws of Nature, then it settles for 
processing the maximum on a sample z1, …, zn. 

( )( )
1

1( ) ( ( ), ) ( ) ( ) ,
2

n

n i i
i

E f l f x y dP z E f l f x y
=

= =   (7) 

The empirical risk En(f) determines the function of training set. The desired risk E(f) 
calculates the generalisation task which is highly required on upcoming samples. The 
statistical learning principle involves in reducing the empirical risk than using expected 
risk while the selected family F is highly limited. 

3.3.1 Gradient descent (GD) 
It is projected to reduce the empirical risk En(fw) with the help of GD. Every iteration 
updates the weights w according to the gradient of En(fw). 

( )+1
1

1 , ,
2

n

t t i t
i

w w γ wQ z w
=

= − ∇  (8) 

where γ defines the sufficiently selected learning rate. Using adequate regularity 
considerations, while initial estimate w0 is nearby the optimum, and if the learning rate γ 
is sufficiently minimum, this method accomplishes linear convergence (Leung and 
Haykin, 1991), such as –log ρ ~ t, where ρ is the residual error. The massive solutions for 
optimisation models are developed by replacing scalar learning rate γ by a positive 
definite matrix Γt seeks inverse of Hessian of cost at optimal range: 

( )+1
1

1Γ , ,
2

n

t t t i t
i

w w wQ z w
=

= − ∇  (9) 
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The second order GD (2GD) is defined as a variant for popular Newton model. With the 
help of optimistic regularity considerations, have offered w0 which is closer to the 
optimum, and 2GD attains quadratic convergence. While the cost is quadratic and scaling 
matrix Γ is accurate, the technique accomplishes the optimal range after each iteration. 
Else, the enough smoothness would be –log log ρ ~ t. 

3.3.2 Stochastic gradient descent 
The SGD method is assumed to be a drastic simplification model. Rather applying the 
gradient of En(fw) accurately, all iterations determine the gradient according to randomly 
selected instance zt: 

( )+1 ,t t t i tw w γ wQ z w= − ∇  (10) 

The stochastic task {wt, t = 1, …} is based on the samples that has been selected in 
random manner. At this point, the SGD optimised the desired risk, where the instances 
are arbitrarily obtained from the ground truth distribution. 

3.4 Learning rate scheduler 

While training the DL model, it is highly applicable in reducing learning rate (γt) when 
there is progress in training phase. The number of weights upgraded at the time of 
training is said to be a step size or ‘learning rate’. In particular, learning rate is a 
configurable hyperparameter applied in training NN with minimum positive value, from 
0.0 and 1.0. The learning rate should be fixed in an appropriate way to achieve better 
results. Smaller learning rates needs maximum training epochs that provides tiny 
modifications for the weights while learning rates tends to provide drastic changes and 
needs minimum training epochs. The process of tuning the learning rate is difficult. A 
high learning rate leads to the divergent training process whereas a low learning rate 
results in slow convergence. To achieve effective outcome, it is needed to simulate with 
different learning rate at the time of training. A technique used to schedule leaning rate is 
called as learning rate scheduler. Typical learning rate schedulers are time-based decay, 
step decay and exponential decay. 

The SGD optimisation algorithm in the SGD class includes an argument known as 
decay. It is employed in the time-based learning rate decay schedule, as given below. 

1
1+

Learning Rate Learning Rate
decay iteration

= ∗
∗

 (11) 

If the decay argument is 0 (the default), learning rate remains same. Once the decay value 
is defined, it would reduce the learning rate from the previous epoch by the given fixed 
amount. In this view, we have developed a new learning rate scheduler called TED by the 
integration of time decay and exponential decay to achieve maximum classification 
performance. 

The time-based learning schedule can be mathematically represented as follows: 

+1 1+
t

t
lrlr

kt
=  (12) 
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where k is a decay parameter, t is the iteration step and lr is the learning rate. The 
equation states that the SGD model takes decay and lr arguments and update the new 
learning rate by a decreasing factor in every individual epoch. 

The exponential learning schedule can be mathematically defined by: 

0
kt

tlr lr e−= ∗  (13) 

where lr0 is the initial learning rate, k is decay parameter and t is the iteration step. This 
function exponentially decaying the learning rate and fed into the learning rate scheduler. 
The proposed TED learning rate scheduler is the integration of time and exponential 
learning schedule functions, as defined below. 

+1 1+
t

t kt

lrlr
e−

=  (14) 

The proposed SGD-TED learning rate scheduler exponentially decays the learning rate 
based on learning rate of previous time iteration. This leads to achieve minimum and 
maximum decay values. Therefore, the application of TED helps to achieve optimal 
learning rate and thereby classifier outcome gets increased. 

4 Performance validation 

The presented model is simulated using Python 3.6.5 tool. In addition, three different 
datasets namely diabetes, EEG Eye State and Framingham dataset are used. A set of 
measures used to examine the results are precision, recall, F-measure, accuracy, and 
kappa. These measures are defined in equations (15)–(19). 

+
TPPrecision

TP FP
=  (15) 

+
TPRecall

TP FN
=  (16) 

+
+ + +

TP TNAccuracy
TP TN FP FN

=  (17) 

 (18) 

2-
2 + +

TPF measure
TP FP FN

=  (19) 

where TP, TN, FP, and FN represent true positives, true negatives, false positives, and 
false negatives respectively. 

4.1 Dataset description 

This segment reviewed the efficiency obtained through SGD-TED on varied datasets. A 
group of three datasets by diagnoses code like diabetes, EEG Eye State and Framingham 
has been used for result analysis of the SGD-TED (Strack et al., 2014; EEG Eye State 
Data Set, 2013; Ajmera, 2018). The earlier diabetes dataset has the whole 101,766 
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samples with a group of 49 features. Moreover, two class labels are available where a 
group of 78,363 samples appears in positive class type and the remaining 23,403 samples 
come in negative class type. The later EEG Eye State datasets consist of a sum of 14,980 
samples along with a collection of 15 features. Further, a two class labels come under this 
dataset where a group of 82,527 samples falls in class one label and the remaining 6,723 
samples comes in class two labels. Besides, the Framingham dataset comprises a set of 
4,240 samples with the collections of 16 features. In addition, two class labels present 
where a collection of 3,596 samples fall beneath zero class and remaining 644 samples 
comes in class one. 

4.2 Results analysis 

In order to validate the effective performance of the presented model, a series of existing 
techniques such as SGD with exponential learning scheduler (SGDE) (Li and Arora, 
2019), SGD with constant (SGDC) (Chee and Toulis, 2018), SGD with time-based 
learning scheduler (SGDT) (Lau, 2017), and SGD with step decay (SGDS) (Ge, 2019) 
models are used. The SGDE involves an exponential increase in learning rate schedule, 
i.e., learning rate increases by some (1 + α) factor in every epoch for some α > 0. Next, 
the SGDC includes a default learning rate schedule in SGD optimiser. The SGDT has an 
argument called decay. This argument is used in the time-based learning rate decay 
schedule. Also, in SGDS, the learning rate gets dropped by a factor every few epochs. 

A detailed comparative accuracy analysis of the SGD-TED with other models takes 
place and the results obtained on the three dataset are given in Figures 2–4. 

Figure 2 Analysis of accuracy on proposed vs. existing learning rate scheduler on diabetes 
dataset (see online version for colours) 

 

Figure 2 shows the accuracy analysis of the presented SGD-TED model compared to 
other learning rate scheduler models for SGD on the applied diabetes dataset. Under the 
varying number of epochs, the figure portrayed that the SGDE and SGDC models have 
exhibited reduced classifier outcome with the accuracy of 97.85% and 97.64%. At the 
same time, the SGDT and SGDS models have tried to show better accuracy over the 
earlier models with the accuracy of 97.91% and 98.10%, but not higher than the 
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presented SGD-TED model. The presented model has exhibited higher accuracy of 
98.59% and it gets increased with an increase in epoch count. 

The accuracy analysis of the presented SGD-TED technique is represented in  
Figure 3 over previous learning rate schedule techniques for SGD on the EEG Eye State 
dataset. With a variation in epoch count, the figure revealed that the SGDE and SGDC 
techniques have shown comparatively lower classification results with the accuracy of 
90.41% and 89.23% respectively. Simultaneously, the SGDT and SGDS techniques have 
offered betterment in accuracy values of 91.76% and 92.45%, except the projected SGD-
TED technique. The proposed technique has demonstrated high accuracy rate of 93.68% 
and it continues to increase with a rise in number of epochs. 

Figure 3 Analysis of accuracy on proposed vs. existing learning rate scheduler on EEG Eye State 
dataset (see online version for colours) 

 

Figure 4 Analysis of accuracy on proposed vs. existing learning rate scheduler on sleep stage 
dataset (see online version for colours) 

 

Figure 4 investigates the comparative accuracy analysis of the presented SGD-TED and 
existing learning rate schedule techniques for SGD on the sleep stage dataset. On 
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analysing the results with various numbers of epochs, the figure pointed out that the 
SGDE and SGDC techniques have demonstrated ineffective performance with the 
accuracy of 93.90% and 93.68%. Concurrently, the SGDT and SGDS techniques have 
exhibited better performance to a certain extent over SGDE and SGDC models with the 
accuracy of 94.27% and 94.85%. However, a maximum accuracy rate of 95.20% has 
been attained by the presented model under the variation in number of epochs. 
 

 

Table 1 Performance analysis of proposed method with existing methods (Li and Arora, 2019; 
Chee and Toulis, 2018; Lau, 2017; Ge et al., 2019) for applied datasets 

Methods Measures Precision Recall F-measure Accuracy Kappa 
Diabetes SGD-TED-LSTM 97.65 98.10 98.22 98.59 97.63 

SGDC-LSTM 96.43 96.10 97.12 97.64 95.81 
SGDT-LSTM 97.10 97.23 97.45 97.91 95.97 
SGDS-LSTM 97.34 97.83 98.02 98.10 96.87 
SGDE-LSTM 96.54 96.38 97.46 97.85 95.92 

EEG Eye State SGD-TED-LSTM 95.42 94.61 95.33 93.68 92.90 
SGDC-LSTM 86.55 86.80 88.31 89.23 86.05 
SGDT-LSTM 89.62 90.29 91.40 91.76 89.60 
SGDS-LSTM 90.43 91.30 91.65 92.45 90.84 
SGDE-LSTM 86.86 87.12 88.43 90.41 88.92 

Sleep stage SGD-TED-LSTM 96.31 95.83 95.87 95.20 94.09 
SGDC-LSTM 91.65 92.86 92.90 93.68 92.82 
SGDT-LSTM 92.44 91.40 92.47 94.27 93.21 
SGDS-LSTM 93.60 93.69 93.85 94.85 93.76 
SGDE-LSTM 91.86 92.91 92.97 93.90 93.10 

Table 1 provides a comparative analysis of the results offered by distinct models on the 
applied three datasets. On the applied diabetes dataset, the SGDC-LSTM model has 
showed its inefficient classifier outcome by providing minimal precision of 96.43%, 
recall of 96.10%, F-measure of 97.12%, accuracy of 97.64% and kappa value of 95.81%. 
On the other hand, a slightly higher precision of 96.54%, recall of 96.38%, F-measure of 
97.46%, accuracy of 97.85% and kappa value of 95.92% is offered by the SGDE-LSTM 
model. At the same time, the SGDT-LSTM model has showed better results to a certain 
extent with the precision of 97.10%, recall of 97.23%, F-measure of 97.45%, accuracy of 
97.91% and kappa value of 95.97%. Also, the SGDS-LSTM model has demonstrated 
better results over the earlier methods with the high precision of 97.34%, recall of 
97.83%, F-measure of 98.02%, accuracy of 98.10% and kappa value of 96.87%. At last, 
the SGD-TED-LSTM model has exhibited maximum classification performance with the 
higher precision of 97.65%, recall of 98.10%, F-measure of 98.22%, accuracy of 98.59% 
and kappa value of 97.63%. 

The classification results analysis of the projected SGD-TED method on the given 
EEG Eye State dataset stated that the SGDC-LSTM approach has displayed its worst 
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classifier result by providing lower precision of 86.55%, recall of 86.80%, F-measure of 
88.31%, accuracy of 89.23% and kappa value of 86.05%. Besides, a better precision of 
86.86%, recall of 87.12%, F-measure of 88.43%, accuracy of 90.41% and kappa value of 
88.92% is provided by the SGDE-LSTM model. Simultaneously, the SGDT-LSTM 
model has depicted better results to a greater extent with the precision of 89.62%, recall 
of 90.29%, F-measure of 91.40%, accuracy of 91.76% and kappa value of 89.60%. 
Additionally, the SGDS-LSTM model has shown better results than previous models with 
the maximum precision of 90.43%, recall of 91.30%, F-measure of 91.65%, accuracy of 
92.45% and kappa value of 90.84%. Finally, the SGD-TED-LSTM model has showcased 
higher classification performance with the best precision of 95.42%, recall of 94.61%,  
F-measure of 95.33%, accuracy of 93.68% and kappa value of 92.90%. 

The classification results analysis of the projected SGD-TED model on the given 
Sleep State dataset implied that the SGDC-LSTM model has depicted its poor classifier 
outcome by providing least precision of 91.65%, recall of 92.86%, F-measure of 92.90%, 
accuracy of 93.68% and kappa value of 92.82%. Then, a moderate precision of 91.86%, 
recall of 92.91%, F-measure of 92.97%, accuracy of 93.90% and kappa value of 93.10% 
is offered by the SGDE-LSTM model. Meanwhile, the SGDT-LSTM technologies has 
shown measured results to a certain limit with the precision of 92.44%, recall of 91.40%, 
F-measure of 92.47%, accuracy of 94.27% and kappa value of 93.21%. Moreover, the 
SGDS-LSTM model has depicted manageable results over the traditional methods with 
the maximum precision of 93.60%, recall of 93.69%, F-measure of 93.85%, accuracy of 
94.85% and kappa value of 93.76%. Consequently, the SGD-TED-LSTM model has 
shown best classification performance with the optimal precision of 96.31%, recall of 
95.83%, F-measure of 95.87%, accuracy of 95.20% and kappa value of 94.09%. 

Figure 5 Accuracy analysis on diabetes dataset (see online version for colours) 

 

A comparative results analysis of the SGD-TED model with existing methods such as 
differential evolution (DE)-based LSTM (DE-LSTM), DE-GRU, DE-RNN, rough  
set-based LSTM (RS-LSTM), simulated annealing-based LSTM (SA-LSTM), GRU, 
RNN, LSTM, and MLP model is made on the diabetes dataset in Table 2 and Figure 5. 
The experimental indicated that the MLP and RNN models have failed to show effective 
results by achieving lower accuracy of 81.90% and 86.87% respectively. It is also noted 
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that the GRU and LSTM models have reached to slightly higher and closer accuracy of 
91.54% and 91.75% respectively. Along with that, it is noticed that the DE-RNN model 
has shown somewhat higher accuracy of 92.43%. Besides, the RS-LSTM and SA-LSTM 
models have portrayed moderate accuracy of 95.89% and 95.48% respectively. On 
continuing with, the SGD-TED-RNN, SGD-TED-RNN, SGDT-LSTM, SGDE-LSTM, 
DE-LSTM and DE-GRU models have attained acceptable performance with the accuracy 
of 97.86%, 97.64%, 97.91%, 97.85%, 97.59% and 96.34% respectively. Along with that, 
the SGD-TED-GRU and SGDS-LSTM models have exhibited competitive accuracy 
values of 98.14% and 98.10% respectively. However, the presented SGD-TED-LSTM 
model has shown superior performance with the higher accuracy of 98.59%. 
Table 2 Comparative accuracy analysis of SGD-TED-LSTM with existing methods 

(Kaliyapillai and Krishnamurthy, 2020) on diabetes dataset 

Classifiers Accuracy (%) 
SGD-TED-LSTM 98.59 
SGD-TED-GRU 98.14 
SGD-TED-RNN 97.86 
SGD-TED-RNN 97.64 
SGDT-LSTM 97.91 
SGDS-LSTM 98.10 
SGDE-LSTM 97.85 
DE-LSTM 97.59 
DE-GRU 96.34 
DE-RNN 92.43 
RS-LSTM 95.89 
SA-LSTM 95.48 
GRU 91.54 
RNN 86.87 
LSTM 91.75 
MLP 81.90 

The result analysis provided by the SGD-TED model with existing methods such as  
DE-LSTM, DE-GRU, DE-RNN, RS-LSTM, SA-LSTM, GRU, RNN, LSTM, linear 
support vector machine (SVM), and hidden Markov model (HMM) models take place 
with respect to accuracy on the EEG Eye State dataset is shown in Table 3 and Figure 6. 
The results implied that the HMM and Linear SVM methodologies have failed to 
showcase effective results by accomplishing minimum and closer accuracy of 55.12%. 
Also, it is pointed that the RNN, GRU and LSTM models have attained better and nearby 
accuracy of 78.94%, 80.65% and 81.78% correspondingly. In line with this, it is pointed 
that the SA-LSTM and DE-RNN approaches have shown reasonable accuracy of 84.49% 
and 85.23% respectively. On the other hand, the RS-LSTM, DE-GRU and DE-LSTM 
frameworks have implied gradual accuracy of 87.11%, 87.14% and 88.52% respectively. 
Along with that, the SGDC-LSTM, SGDE-LSTM, SGDT-LSTM and SGDS-LSTM 
schemes have reached considerable function with accuracy of 89.23%, 90.41%, 91.76% 
and 92.45% correspondingly. Similarly, the SGD-TED-GRU and SGD-TED-RNN 
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models have showcased competing accuracy values of 92.76% and 92.53% 
correspondingly. Hence, the projected SGD-TED-LSTM model has depicted qualified 
performance with the maximum accuracy of 93.68%. 
Table 3 Comparative accuracy analysis of SGD-TED-LSTM with existing methods 

(Kaliyapillai and Krishnamurthy, 2020) on EEG Eye State dataset 

Classifiers Accuracy (%) 
SGD-TED-LSTM 93.68 
SGD-TED-GRU 92.76 
SGD-TED-RNN 92.53 
SGDC-LSTM 89.23 
SGDT-LSTM 91.76 
SGDS-LSTM 92.45 
SGDE-LSTM 90.41 
DE-LSTM 88.52 
DE-GRU 87.14 
DE-RNN 85.23 
RS-LSTM 87.11 
SA-LSTM 84.49 
GRU 80.65 
RNN 78.94 
LSTM 81.78 
Linear SVM 55.12 
HMM 55.12 

Figure 6 Accuracy analysis on EEG Eye State dataset (see online version for colours) 

 

An accuracy analysis of the SGD-TED method is compared with the DE-LSTM,  
DE-GRU, DE-RNN, RS-LSTM, GRU, RNN, LSTM, CNN, 5 channel CNN (5C-CNN), 
7 channel CNN (7C-CNN), 9 channel CNN (9C-CNN), 11 channel CNN (11C-CNN), 
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deep belief networks (DBN), stacked autoencoders (SAE), and radial basis function 
(RBF) on the Sleep stage dataset is depicted in Table 4 and Figure 7. The figure 
portrayed that the DBN and SAE methodologies have failed to imply productive results 
by accomplishing minimal accuracy of 72.20% and 77.70% correspondingly. It is pointed 
that, the CNN, RBF and RNN approaches have attained a better and identical accuracy of 
78.23%, 81.70% and 82.19% correspondingly. In line with this, it is notified that the  
5C-CNN, GRU and LSTM models have reasonable accuracy of 83.20%, 85.42% and 
86.45% respectively. 
Table 4 Comparative accuracy analysis of SGD-TED-LSTM with existing methods 

(Kaliyapillai and Krishnamurthy, 2020) on sleep stage dataset 

Classifiers Accuracy (%) 

SGD-TED-LSTM 95.20 

SGD-TED-GRU 95.12 

SGD-TED-RNN 95.04 

SGDC-LSTM 93.68 

SGDT-LSTM 94.27 

SGDS-LSTM 94.85 

SGDE-LSTM 93.90 

DE-LSTM 93.18 

DE-GRU 91.57 

DE-RNN 87.93 

RS-LSTM 91.49 

GRU 85.42 

RNN 82.19 

LSTM 86.45 

CNN 78.23 

5C-CNN 83.20 

7C-CNN 87.50 

9C-CNN 89.00 

11C-CNN 90.12 

DBN 72.20 

SAE 77.70 

RBF 81.70 

Next, the 7C-CNN, DE-RNN and 9C-CNN frameworks have implied gradual accuracy of 
87.50%, 87.93% and 89%. Additionally, the 11C-CNN, RS-LSTM approaches have 
performed better result with considerable accuracy of 90.12% and 91.49% 
correspondingly. Similarly, the DE-GRU and DE-LSTM methodologies have productive 
performance with maximum accuracy of 91.57% and 93.18% respectively. On the same 
way, the SGDC-LSTM, SGDE-LSTM, SGDT-LSTM and SGDS-LSTM models have 
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reached manageable function with the accuracy of 93.68%, 93.90%, 94.27% and 94.85% 
correspondingly. Similarly, the SGD-TED-GRU and SGD-TED-RNN methods have 
shown competing accuracy values of 95.12% and 95.04% respectively. Therefore, the 
proposed SGD-TED-LSTM model has displayed qualified performance with the higher 
accuracy of 95.20%. The above mentioned tables and figures indicated the effective 
learning rate determination and maximum classification outcome of the presented model 
on the applied medical dataset. 

Figure 7 Accuracy analysis on sleep stage dataset (see online version for colours) 

 

5 Conclusions 

This paper has developed an effective SGD with learning rate scheduling model for  
DL-based healthcare diagnosis model. The integration of time and exponential decay 
approaches helps to achieve proper learning rate at minimal computation time. The 
presented SGD-TED model initially undergoes data pre-processing and then DL-based 
data classification process takes place. The SGD-TED model is applied to tune the 
parameters of the three DL models namely LSTM, RNN and GRU. The experimental 
results of the SGD-TED model are validated using three benchmark dataset. The 
simulation outcome indicated that the SGD-TED-LSTM model has resulted to a higher 
accuracy of 98.59%, 93.68% and 95.20% on the applied diabetes, EEG Eye State and 
sleep stage dataset. As a part of future scope, the presented model can be deployed in an 
internet of things (IoT) and cloud-based platform to assist physicians and doctors from 
remote areas. 
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