
Int. J. Information Technology, Communications and Convergence, Vol. 4, No. 1, 2021 1

Architecture and framework for data acquisition in
cloud robotics

Y. Watanobe*, Y. Yaguchi, K. Nakamura,
T. Miyaji, R. Yamada and K. Naruse
Department of Computer Science and Engineering,
University of Aizu,
Aizuwakamatsu, Japan
Email: yutaka@u-aizu.ac.jp
Email: yaguchi@u-aizu.ac.jp
Email: keita-n@u-aizu.ac.jp
Email: m5211146@u-aizu.ac.jp
Email: ryamada@u-aizu.ac.jp
Email: naruse@u-aizu.ac.jp
*Corresponding author

Abstract: This study explores a data acquisition architecture and framework
in cloud robotics. In cloud robotics environments, software components
play important roles by acquiring data from heterogeneous devices and
then performing context-aware computing with the help of knowledge bases
organised by the data. However, there are numerous tasks that must be
performed to create such components, and their corresponding database
schemas, services, and repositories, and these tasks can be burdensome for
developers. In this paper, an architecture and framework for constructing
a data acquisition system are presented as a theory and a concrete
implementation, respectively. Our proposed architecture enables developers to
construct a robot environment with data acquisition functionalities by defining
scenarios in an ontology language, as well as by defining objects and services
in modern programming languages. The framework is realised in a way that
allows it to automatically generate the required software components and their
corresponding repositories, which are deployed on the cloud. Case studies
showcasing the proposed framework are also presented.

Keywords: cloud robotics; architecture; data acquisition; robotics technology
components.

Reference to this paper should be made as follows: Watanobe, Y.,
Yaguchi, Y., Nakamura, K., Miyaji, T., Yamada, R. and Naruse, K.
(2021) ‘Architecture and framework for data acquisition in cloud robotics’,
Int. J. Information Technology, Communications and Convergence, Vol. 4,
No. 1, pp.1–25.

Biographical notes: Y. Watanobe is currently a Senior Associate Professor
with the School of Computer Science and Engineering, The University of
Aizu, Japan. He received his MS and PhD from the University of Aizu
in 2004 and 2007 respectively. He was a Research Fellow of the Japan

Copyright © The Authors(s) 2021. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)



2 Y. Watanobe et al.

Society for the Promotion of Science at the University of Aizu in 2007. His
research interests include data mining, smart learning, cloud robotics, and
visual languages.

Y. Yaguchi received his BS in Computer Science and Engineering from
the University of Aizu in 2006, and his PhD in Computer Science and
Engineering from the Graduate School of Computer Science and Engineering,
University of Aizu in 2011. In 2011, he became an Assistant Professor
in the Department of Information Systems, Faculty of Computer Science
and Engineering, University of Aizu, and in October 2013, he became
an Associate Professor in the same department. His research interests
include navigation and path planning of multiple UAVs, security and safety
co-engineering IoRT and cloud robotics design.

K. Nakamura received PhD in Information Science from Hokkaido
University, Japan in 2013. He worked as an Assistant Professor at the
Department of Information and Computer Engineering, National Institute of
Technology, Gunma College, Japan from 2014 to 2016. He is currently an
Associate Professor at the University of Aizu, Japan. His research interests
include robot performance evaluation method, 3D object reconstruction, deep
learning, robot vision, data mining, natural language processing.

T. Miyaji is a master student of University of Aizu. His research interests
include cloud robotics and database management systems.

R. Yamada is an Associate professor at the University of Aizu. He
received his PhD of Earth and Planetary Science at the University of
Tokyo. He has research experiences in University of Toulouse Ⅲ, Japan
Aerospace Exploration Agency and National Astronomical Observatory of
Japan. His major studies are development of sensors for planetary exploration,
geophysics, planetary science and robot engineering such as autonomous
moving robots.

K. Naruse is currently a Full Professor with the School of Computer Science
and Engineering, The University of Aizu, Japan. His research interests include
swarm robots and its application to agricultural robotic systems, and interface
system for disaster response robots. Currently, he has worked for design,
development, and standardisation of networked distributed intelligent robot
systems with heterogeneous robots and sensors. He has applied it to service
robot systems, factory automation systems, and intelligent disaster respond
robot system, which is tested at Fukushima Robot Test Field.

This paper is a revised and expanded version of a paper entitled ‘Data
acquisition framework for cloud robotics’ presented at 2019 IEEE 10th
International Conference on Awareness Science and Technology (iCAST),
Morioka, Japan, 23–25 October 2019.

1 Introduction

Currently, cloud technology is one of the most trending buzzwords in information
and communications technology (ICT), which provides new opportunities for different



Architecture and framework for data acquisition in cloud robotics 3

application domains. In the area of robotics, cloud technologies can be used to realise
an approach that offloads heavy calculation and memorisation tasks away from the
robots by using cloud computing as well as edge computing. For example, a variety
of architectures and challenges have been explored by Chen et al. (2018a), Saha and
Dasgupta (2018) and Chen et al. (2018b).

One of the attractive features of cloud robotics, or the internet of robots (IoR), is
that robots can access data from a vast knowledge base that was initially constructed
by other robots in order to facilitate context-aware computing. That knowledge
base can also be utilised for different purposes, including both real-time and batch
processing. Furthermore, current trends of big-data analysis and frameworks for artificial
intelligence (AI) are also accelerating innovation in the cloud robotics field (for example
see Guo et al., 2020; Wang et al., 2020).

Meanwhile, recent technological advancements in web-space environments and their
corresponding databases are providing fertile ground for continued growth in cloud
computing. This trend is most easily seen in the ever-increasing number of web
engine frameworks, database management systems, distributed systems, knowledge
representation techniques, and virtualisation technologies that are now available to
efficiently implement and deploy cloud-accessible web services through HTTP. Those
services are also capable of developing and operating in a big-data analysis environment
for different application domains. For example, representational state transfer (REST)
APIs or RESTful APIs provided by microservices can provide an architectural basis
for both the internet of things (IoT) and document management system developments,
as well as for hardware integration (for examples see Al-Masri, 2018; Williams et al.,
2014; Ezzeddine et al., 2018).

Although several previous studies have focused on architecture, in terms of the
software development strategies for robot systems, middleware and operating systems
are key technologies that provide the communications interfaces needed for integrating
heterogeneous components. In the field of cloud robotics, software components that
can acquire/obtain data from different sources/repositories for knowledge sharing will
take on increasingly important roles, while ordinal functions need to be found for
legacy components related to hardware devices, controllers, and algorithms that can be
reused as software assets. In this context, the active development of robot systems will
depend on the integration and interoperability of legacy and advanced data acquisition
components. Furthermore, while many current projects aim at integrating robot systems
and web platforms, the flexibility, interoperability, and availability of existing software
assets will depend on technologies employed in target projects.

In this paper, the architecture and framework of a data acquisition system
for cloud robotics are presented. In our project, the cloud robotics are oriented
toward environments in which different types of robots, such as indoor and outdoor
multi-service robots, etc. collaborate by sharing data with each other on disaster
scenes, etc. More specifically, the framework is oriented towards constructing a cloud
robotics environment based on robotic technology components (RTCs), in which data
elements obtained from the controllers, actuators, and sensors of various robots are
collected into a robot data repository (RDR). This allows the data to be used for
different purposes, both offline and online, in order to make the robot system more
intelligent. Generally speaking, since the raw data collected from heterogeneous robots
is disorganised, it needs to be transformed into well-organised data to facilitate
effective search operations. These transformation processes are performed by different



4 Y. Watanobe et al.

types of manipulations through multistage databases. However, to construct such
robot systems, various burdensome processes must be completed. These include the
development of components that are compatible with employed technologies, the design
of database schemas, the implementation of APIs, as well as the deployment of
necessary controllers, services, and repositories on the server side. Another point of
concern is that, depending on scenarios, the required components and the corresponding
schema may vary, even within the same project. As a result, developers may need to
construct systems for each scenario or experiment.

With these points in mind, this paper presents an architecture and framework that
supports the developers by providing a unique builder that automatically generates
reusable software components for data acquisition, database schemas, and their
corresponding repositories. It also provides services that can be used to transform raw
accumulated data into usable forms within the multistage databases. The automated
processes are performed within five layers oriented toward ontology, programs, software
components, web services, and database repositories. Hence, the contribution of this
paper is summarised in the following three areas:

• We propose an architecture that provides a theoretical basis for the automation
processes used for system integration within robotics environments.

• We show how the framework is employed based on the proposed architecture as a
concrete implementation with modern technologies.

• We present two case studies that show how the framework can seamlessly create
the required components, services, and repositories.

Herein, two case studies are presented. The first study relates to simple data
transformation based on definition through ontology, while the second relates to
a scenario in which different robots cooperate through data shared on the cloud.
Through these case studies, the productivity, availability, sustainability, scalability, and
transparency of the proposed architecture and framework are demonstrated. This paper
is an extension of Watanobe et al. (2019) originally presented in 2019 IEEE 10th
International Conference on Awareness Science and Technology (iCAST) titled ‘Data
acquisition framework for cloud robotics’.

The rest of the present paper is organised as follows. In Section 2, related work is
presented. In Section 3, overviews of the cloud robotics concept and data acquisition
in the cloud robotics field are presented. In Section 4, the general scheme of the
architecture and its concrete framework implementation are discussed. The case studies
and their related discussion are presented in Sections 5 and 6, respectively. Finally, we
conclude the paper in Section 7.

2 Related work

There have been a wide variety of studies aimed at making robots more intelligent
by means of machine learning or other data analysis technologies (see for example
Popov et al., 2018; Bergamini et al., 2020). However, even though a number of case
studies have been demonstrated previously, our study focus is on how we can efficiently
develop a system in which the robot’s brain is maintained on the cloud along with
the required data. Within that context, there have been a number of different studies



Architecture and framework for data acquisition in cloud robotics 5

that have some relationships with our research activities, including cloud robotics, data
repositories, architecture, and standardisation.

Many projects aim at providing a platform as a service (PaaS) for cloud robotics.
The first we should mention is the RoboEarth project by Waibel et al. (2011), in which
the RoboEarth cloud engine and RoboEarth database are integrated to construct a World
Wide Web (WWW) for robots. There is also Rapyuta, initiated by Hunziker et al. (2013),
which is the name of a cloud engine that allows developers to deploy a safety server
based on Linux containers. Using this platform, robots can access the server to offload
computations and submit queries to the knowledge base through nodes uploaded by the
developer. The project presented by Haidu et al. (2018) is focused on the engines for
reasoning, prediction, and learning tasks that are required for object manipulation.

Similar to the projects mentioned above, OpenEASE, initiated by Bozcuoglu et al.
(2018) and Beetz et al. (2015) is a web-based knowledge service that consists of a
big-data database of manipulation information obtained from both humans and robots.
It includes the manipulation of concept models, as well as software tools for querying,
visualising, and analysing those manipulations.

As for data repositories, there have been various proposals related to cloud robotics
architectures. For example, Niemueller et al. (2012) proposed a system based on
the MongoDB database and the robot operating system (ROS) for fault analysis and
performance evaluation applications. In addition, Park et al. (2016) proposed a system
architecture that could be used to control robot tasks through sensory data acquisition in
ROS environments, while Filip et al. (2019) proposed an architecture for a cloud-edge
infrastructure, along with a model and a formal description of a data capsule.

Although the projects mentioned above are oriented on the ROS system, there
are several ongoing projects for developing robot systems with standardisation.
These include RT-middleware (RTM) initiated by Ando et al. (2011), which
is one of the promising projects based on the object management group
(OMG) standard, and a number of robotics technology components that have
been developed as software assets, including intelligent modules (for examples
see OpenRTM-aist, https://www.openrtm.org/openrtm/; RTC-Library-FUKUSHIMA,
https://rtc-fukushima.jp/; Yaguchi et al., 2017; Ogitsu et al., 2015; Tsuichihara et al.,
2015).

On the other hand, to integrate costly reusable legacy components from
different projects and expand them as Internet services, gateways between RTM and
common network-based robot service platforms have been considered by Kato et al.
(2011) and Narita et al. (2009). Hence, the continuous development of OpenRTM
(https://github.com/OpenRTM) with different communication interfaces, which takes
interoperability (or bridging) with ROS into account, is also an attractive feature of
our project. For example, brokered publish-subscribe (pub/sub) messaging interfaces for
RTM have been considered by Yoshino et al. (2017) and communication interfaces based
on the advanced message queuing protocol (AMQP) and the mosquitto MQ telemetry
transport (MQTT) message broker, both of which are compatible with RTM, have also
been studied by Yoshino et al. (2019) and Yoshino et al. (2018) for IoR systems.

Finally, we should discuss ways for representing standardised knowledge, which can
facilitate human specification of different experiences as well as automated machine
processes. In this context, a standard ontology that specifies entities related to robots and
robotics environments, as well as their relationships, has been defined by IEEE Standard
Ontologies for Robotics and Automation (2015). Ontology is a useful technology for



6 Y. Watanobe et al.

defining information in a standard way as well as in a machine-readable format, which is
why it has been employed in various domains including software engineering, robotics,
and other data science fields. For example, ontologies for robotics and autonomous
system have been considered by Fiorini et al. (2017) for task definition, automation, and
other communication entities between humans and robots. Another example is ontology
building for cyber-physical systems (CPS), which was proposed by Hildebrandt et al.
(2020). In contrast to those efforts, we are trying to employ ontologies in the automation
process in order to generate data acquisition components.

Although, as mentioned above, several potential projects provide AI engines
at higher levels, it is difficult to find a framework that generates interoperable
components that are compatible with specific projects and which are equipped with
corresponding repositories that are designed for specific scenarios. Furthermore, our
focus is also on multistage database repositories for low-level data manipulation,
including transformation, data cleaning, interpolation, and the like. The utilisation
of modern technologies for web and database management systems that are easily
deployed on dedicated host servers is also one of the unique points of our approach.
In this context, it is also in our interest to explore software architectures and design
patterns. For example, our proposed architecture and its implementation are influenced
by the dependency injection (DI) idea proposed by Inversion of Control Containers and
the Dependency Injection Pattern (https://www.martinfowler.com/articles/injection.html),
where a dependency can be inserted as a service into an object that will use it.

3 Cloud robotics concept

In this section, a brief overview of the cloud robotics we pursue is presented. Cloud
robotics is based on the concept of creating systems where robots, sensors, humans,
and other things are organically connected within a number of different clients and
servers. Figure 1 shows our cloud robotics concept from different perspectives, including
how we should develop and deploy a robot system by employing legacy components
from the library. The robot system can be deployed in an actual environment or in
cyberspace. The figure also shows how to make robots more intelligent by using
data repositories with AI algorithms. Additionally, some RDR features are presented
through data characteristics, the structure of the repositories, as well as development and
deployment processes.

3.1 Robot system

Although there are a number of different robot types, as defined by ROBOTS
(https://robots.ieee.org/learn/types-of-robots/), our project employs the following robots
for use in different scenarios.

• Large double-arm robots that are designed to clear away large chunks of debris.
In a disaster, robots will be remotely controlled from the base station. Therefore,
video images and other information such as circumjacent three-dimensional (3D)
point data need to be sent to the stations, which will use them to make decisions
related to the robot’s arm movements and its path of travel.



Architecture and framework for data acquisition in cloud robotics 7

• Medium-size crawler robots that prowl around and through debris on the ground.
These crawler robots can travel through rutted and sloped areas that large robots
are unable to traverse while simultaneously recording the actual conditions in the
form of images and video footage from different directions. Such imagery is
useful for appraising the genuine conditions around the robots, helping to locate
survivors, and identifying danger points in the wreckage. Generally speaking, the
crawler robot is flexible and can be easily expanded by mounting additional
devices such as arms and microscopes.

• Small crawler robots that can explore more flexibly on the ground. In addition,
cameras, different sensors, and devices such as sound recognitions systems can be
mounted to these small robots. One of the crucial roles of such small robots is to
facilitate data transfers by serving as mobile relay stations on the ground.

• Unmanned aerial vehicles, commonly called drones, which can look down and
observe the ground continuously. While their primary role is to send bird’s-eye
imagery data and spatial information to the base stations and other robots,
environmental information is also recorded. It is also important to remember that
several drones can be organised in a cluster and fly in formation in order to
collect data covering a wide area over a long period. Such drones can also serve
as mobile stations to facilitate data transfers between different robots.

Figure 1 Overview of cloud robotics

Cleaning

Searching

Interpolating

Integrating

Transforming

Clustering

Task
Allocation

Path
Planning

Traffic
Control

Localization
& Mapping

Recognition
Situation

Task

Separation

Behavior

Represent

Model

Redesign

Abnormal
Analysis

Expanding

Expectation

Models for
Simulation

Simulator
Local Base Station

Component Library

RTC: Primitives RTC: Algorithms RTC: Data Acquisition ROS node: Primitives

Real Environment Virtual Environment

Robot Data Repository

Artificial Intelligence

Other Services

Robot System

Cloud Base-Station

Development Deployment

Data Acquisition

Service

utilize

Each robot type consists of motors, actuators, and related sensors, and each robot’s
movements are based on the accumulation of its simple device behaviours. This
means that the robots can improve their intelligence by analysing their own log data.



8 Y. Watanobe et al.

Furthermore, the various types of data show that the robot system as a whole can be
made more intelligent by sharing data and by collaborating in ways that allow each robot
to fulfill its unique functions. This cooperation is a crucial issue for disaster scenes as
can be seen in the challenges of the WRS (https://worldrobotsummit.org/en/) in which
such situations are simulated with the abovementioned robots.

Local base stations are setup to provide remote control for different robots based on
both human and machine decision-making processes. Local base stations also provide
environments where images, robot statuses, and other environmental information can be
observed on display screens. Robot controllers and user interfaces are also deployed at
such stations. Such local stations can also be connected to cloud base stations in order
to obtain relevant data and optimal instructions.

Simulators, where operators can manipulate robots or check on their behaviour via
a virtual environment, are also essential parts of robot systems for practice and related
experiments, while the data and related services provided by the cloud play important
roles in related simulations.

3.2 Cloud base station

The cloud base station is the brain of the robot system and is oriented to both real-time
processing (by online accumulation) and the organisation of an optimal environment
(by offline accumulation). The intelligence, safety, and reliability of the robot system
are dependent on both the quality and quantity of data. Therefore, useful information
resources from available sources should be thoroughly accumulated, and the data should
be refined through multistage databases.

At the lower level, the raw data should be cleaned via noise removal, interpolation,
integration, and other transformations through the multistage databases. To manage the
data, database management systems, appropriate storage areas, and the corresponding
application programming interfaces (APIs) should be deployed to bridge the gap
between the stations and the robot system (and other services).

In contrast, a variety of AI engines should be deployed at a higher level. These
engines utilise the data in the repositories and provide added value to the robot system,
as well as to the repositories. As for other services, simulator platforms with related
models are among the critical parts of a cloud base station (note that details regarding
AI engines and simulators are considered to be outside the scope of this paper).

3.3 Component library

In terms of the development side and the robot system deployment, reusable legacy
components with a common interface play a key role in integrating heterogeneous
functional elements, which include controllers for different hardware devices (such as
motors), sensors for obtaining different types of data (such as cameras), and algorithms
for various AI functions (such as image processing). Since such modules can be
prepared from reusable legacy software components, the development and popularisation
of a library for such components have the potential to facilitate high-quality and
rapid development, as well as enhance cost reductions via recycling. To communicate
with the cloud base station, software components for data acquisition (as well as AI
engines) should be implemented as members of the component library. In other words,



Architecture and framework for data acquisition in cloud robotics 9

the legacy components and the data acquisition components should coexist so that
their reusability and interoperability are maintained. Regarding deployment, if a data
acquisition component is involved in the robot system, the corresponding repository and
API should be prepared on the cloud base station.

3.4 Data

Our first target comprises data related to the status of each robot, which are useful for
organising and ensuring optimal and safe robot movements. For all robots, timestamps,
positions, accelerations, velocities, and angles, as well as their foreseeable and derived
values (such as distances and duration), are necessary for optimal and automated
control. They are also essential data for creating safe robot environments where danger
avoidance and emergency stop functions are appropriately activated.

In addition to data from robots, log data from their controllers at the local base
station, as well as from the robots themselves, should also be utilised. Consistencies
between actual robot movements and their corresponding command logs can be analysed
to identify potential accident scenarios, as well as to improve the robot system as a
whole.

In addition to information related to raw data, multimedia data from sensors
(including cameras) take on essential roles in many scenarios. For example, images
related to bird’s-eye views, environmental data (temperature, pressure, etc.) from
sensors, and other information (such as sounds) are employed to gain an overall
understanding of current and past conditions. Point sets obtained by 3D LiDAR can
be used for creating maps and environments based on simultaneous localisation and
mapping (SLAM).

3.5 Structure of repositories

The RDR is based on the idea of a data lake in which different operations such as
ingestion, extraction, cleaning, integration, and discovery are accomplished (see for
example Nargesian et al., 2019). Since heterogeneous devices exist in cloud robotics
environments, data will arise from different sources at different times and at various
frequencies. This means that, depending on circumstances such as latency and accuracy,
data elements are often collected irregularly even if they are obtained from the same
type of robot. However, it is difficult to manage such data using only a single relational
database in which the elements of each record are expected to be ready simultaneously
based on pre-defined attributes. Therefore, as shown in Table 1, the RDR data are
managed within multistage databases.

Data obtained from the sources at the very beginning should be accumulated in the
first-order database, which is oriented towards saving data ‘as is’. On the other hand, the
data manipulations should be performed through the multistage databases (second-order
databases) involving intermediate data, after which they are transferred to one of the
second-order databases oriented towards searching from different perspectives.

The first-order database organises unstructured (semi-structured) data. Unstructured
data are by nature raw data, and each record can be represented as an object. Since
unstructured data repositories will receive data with different types and sizes at irregular
intervals, they will eventually become massive and cumbersome if left in an unstructured



10 Y. Watanobe et al.

state. To make them useful, such repositories need to be implemented via object-oriented
databases with key-value stores and NoSQL technology for sorting and storing the
unstructured data.

Table 1 Features of data in different stages

Robot data repository

1st-order database 2nd-order databases
Collected as raw data Re-organised as cleaned data
Stored and organised ‘as is’ Stored after integration and combination of

data from different sources
Wide range of uses as future assets Meet specific reuse requirements
Different data types and sizes Exist in predefined fixed fields
Collected in irregular periods and formats Provided on demand
Massive and cumbersome data Refined data
Unstructured, semi-structured data Structured data
Managed by key-value Managed by RDBMS

In contrast, since the second-order databases need to be able to provide useful
information from the structured data, the repository aims to provide data according to
on-demand requests quickly. Accordingly, the repository can be organised in a relational
database with predefined fields for various searching operations, but the structured data
schema must be well defined in terms of field names and their data types.

3.6 Processes for development and deployment

When considering robot projects, there is a wide variety of scenarios involving different
data sources and sinks depending on the scenario’s purpose. As a typical scenario
example, a crawler robot scans a building to obtain information regarding indoor objects,
after which it sends point sets and image data obtained by its LiDAR and cameras
to the RDR. Then, using multistage databases, those information resources can be
cleaned, integrated, and transformed into structured data (through machine learning if
necessary) so that other robots in that building and other systems can utilise the results
for navigation and other intelligent services. Examples of such services include creation
of 3D map and object recognition (see for example Funayama et al., 2020).

To refine such robot systems, actual machine operations and experimental
simulations are performed in physical environments and virtual spaces, respectively.
Hence, as shown in Figure 2, developers (system integrators) need to create a number
of data acquisition components for each scenario. Furthermore, the corresponding
repositories and transformers should be deployed in the RDR.

Therefore, the role of software engineering is to provide a way to create the required
items and reduce associated burdensome tasks which the developer needs to perform the
following actions:

• design a set of database schemas for the different stages

• create transformers to reorganise data in the first-order database for use in the
second-order databases (multistage databases)



Architecture and framework for data acquisition in cloud robotics 11

• implement corresponding data acquisition components that are compatible with
other components integrated into the robot system, as well as with the database

• deploy and activate controllers (bridges between the components and repositories),
services (such as transformation programs), and repositories on the server.

Figure 2 Development scenario for robot system data acquisition

Physical Space

Virtual Space

Components Components

1st database 2nd databases

Transformers

Scenario

Development

Deployment

&

Robot Data Repository

Figure 3 Overview of the proposed architecture

Object Mapping

Component

Entity

Object

Class Class

Component

Repository

Entity

Repository

Development

Deployment

Ontology Layer

Program Layer

Component

 Layer 

WEB Layer

Database Layer

Multi-stage Databases

Function

Controller

Transformer
Service

Controller

Service



12 Y. Watanobe et al.

4 Architecture and framework

The RDR is oriented on a data-centric architecture where the developers design their
robot systems by focusing on the sources, repositories, and receivers of data as well
as on how they are transferred through various components. In this section, the
architectures of the RDR and its compatible framework are presented.

4.1 Architecture

As mentioned above, the processes used to construct a data acquisition system include
a number of tasks. However, developer requirements should be limited and processes
should be automated whenever possible. Generally speaking, the developer should only
need to define the scenario data that he/she needs to manage. Hence, the aim of the
architecture and framework is to support developers via a method with which they can
define the data involved in the robot system in a uniform style or in an accustomed
manner. Then, the framework should automatically generate and deploy the necessary
components, APIs, controllers, services, and repositories.

Since it would be difficult to implement this framework with a monolithic
architecture, it should instead be organised on several layers, each of which is dedicated
to its function and implemented via the appropriate technology. Figure 3 shows an
overview of our proposed architecture, which realises the automation processes through
five layers:

1 an ontology layer

2 a program layer

3 a component layer

4 a web layer

5 a database layer.

In the figure, the continuous line arrow shows the automatic generation, and the dotted
line arrow shows the dataflow during actual operation. The first top two layers are
oriented toward the development perspective, where system integrator activities are
considered. In contrast, the bottom three layers are oriented toward the deployment
perspective, where generated components are operated at different places. Each of these
layers is discussed in detail below.

The ontology layer provides a way to define data and their relationships through
the highest user interface. This layer exists to support humans in different groups,
including non-programmers, while presenting the knowledge specified by humans in
a machine-readable format. The knowledge shared by robots in the ontology layer is
defined in the OWL Web Ontology Language (https://www.w3.org/TR/owl-features/),
which is a family of languages for knowledge representation. These languages, which
are implemented by the World Wide Web Consortium’s (W3C) XML standard for
objects, allow developers to define required data through the standard without depending
on their knowledge of special technologies (such as programming languages). Since the
ontology can be defined in advance for the whole project, he/she selects required objects



Architecture and framework for data acquisition in cloud robotics 13

and relationships from the available items in the defined ontology for each scenario.
The ontology includes a set of objects and relationships (mapping) between them.

The program layer mediates between knowledge defined in the ontology and the
components, which are created in the bottom layers. It exists to provide system
integrators, who will want to use programming languages to define various entities
and their transformations, with opportunities to define knowledge. After a set of
objects/relationships are selected for a scenario in the ontology layer, the required
programs are generated. There are two program types: data and transformer. A data
program is a model that is used to represent an object defined in the ontology layer. In
contrast, a transformer program is a function that transforms one data object to another
data object based on the corresponding mapping in the ontology (in the same manner
as used in the ontology layer).

The component layer provides the main products of the framework. In this layer,
based on the created programs, the components that are to be integrated into the local
robot system are generated for the client side. A component is a software module that
is compatible with RTCs or nodes for the corresponding robot system. There are two
component types. One is the write component, which receives data from connected
components and sends it to the database on the cloud. An ontology (or program) element
defined in the above layers is used to define the input interface of the write component.
The other is the read component, which provides data from the database based on
requests from other connected components. An ontology (or program) element defined
in the above layers is used to define the output interface of the read component. In
principle, a component can be generated from any object defined in the ontology or
program layers.

The web layer provides an interface between the components in the local system
(client) and the available data on the cloud, that is, the data repositories. In other words,
it exists to provide APIs. Hence, after items in ontology layer and program layer are
ready, a set of services, controllers, and entities are generated in the web layer. An entity
is a model that represents data, and the accompanying repository contains available
operations compatible with the corresponding databases. A transformer is a special
service that is periodically performed to transform records in one database into records
in another database. Generally speaking, transformers are created based on elements
defined in the above layers. It is important to note that transformers can be automatically
created if the relationship between the entities involved is defined in the ontology as a
whole. The controllers bridge the gaps between the components on the client side and
the databases on the cloud side through accompanying services.

The database layer is the RDR core where all data is managed. In this layer,
databases are deployed based on repositories with required schemes and tables. A
database entity is created from an entity, and data from the write components
are accumulated into one of the first-order databases through their corresponding
repositories. In contrast, the transformers create and update records in the second-order
databases that provide data to the read components through their corresponding
repositories.

4.2 Framework

It is particularly notable that the architecture presented in the previous section provides
a theoretical concept that can be implemented by integrating different technologies and



14 Y. Watanobe et al.

existing tools. We also implemented a framework oriented to RTCs that is compatible
with OpenRTM. Figure 4 shows the procedures and elements involved in the framework,
which contains the primary builder used to export the required executable codes from
scenario definitions or programs. The primary builder was developed in Python. The
builder imports a set of template programs related to the RTC, service, entry, repository,
and controller classes. Although RTCs can be created in C++, Java, or Python, we
focused on generating RTCs in Python.

In the ontology layer, to prepare the ontology, developers can employ an
existing ontology editor that is compatible with OWL. We employed Protege
(https://protege.stanford.edu/) for our framework. This ontology editor provides a
graphical user interface (GUI) that can be used to define objects as entities and their
hierarchical configuration as well as their relationships. Such editors can consequently
export the ontology in the XML standard format, which can then be input into the
following layers.

In the program layer, the framework generates classes in Java related to data and
transformers from the corresponding ontology in XML. Optionally, the developer can
also create such classes from scratch by skipping the ontology definition. This option
is provided to support programmers who are familiar with traditional programming
languages. A data class consists of fields that represent attributes and their setters/getters.
In contrast, a transformer class consists of functions that generate new objects from
given objects through the required calculations.

Figure 4 Procedure and elements in the implemented framework

Template Programs Executable Codes

Framework Robot System on the Client Side

Builder

ReadComponent_Tmp

WriteComponent_Tmp

ReadService_Tmp

WriteService_Tmp

Repository_Tmp

Entity_Tmp

TransformService_Tmp

Controller_Tmp

ReadService

WriteService

Repository

Entity

TransformService

Controller

WriteComponent_Tmp

import export

input

Robotics Technology Components

Java Classes

RT-Middleware

Spring Boot

Object/Mapping in ontology/Program

develop

ReadComponent_Tmp

Cloud Base

MongoDB

PostgreSQL



Architecture and framework for data acquisition in cloud robotics 15

In the component layer, RTCs are generated based on the ontology or Data classes.
RTCs for writing and reading are generated as WriteRTCs and ReadRTCs respectively.
The RTC communication interfaces are compatible with the other RTCs involved in the
environment. An RTC provides data ports for the corresponding data fields (attributes).
A WriteRTC sends the data that has arrived at the ports to the cloud station through
POST operations. In contrast, a ReadRTC obtains data from the cloud station through
GET operations.

In the web layer, the framework employs Spring (https://spring.io/) to provide the
RESTful API. The Spring Framework employs a software architecture pattern called
the DI mechanism for services and repositories and is compatible with the proposed
architecture. In this layer, classes for data and transformer are converted into the classes
of entity and service, respectively. The framework provides mechanisms to generate
repositories (databases) from the entity classes automatically. The framework deploys
and activates the created controllers, services, and repositories on the dedicated cloud
server. Furthermore, the framework can launch processes to periodically activate specific
functions in a service.

In the database layer, the objects and tables of MongoDB and PostgreSQL
are generated based on the repositories for the first- and second-order databases,
respectively. The framework deploys these databases on the dedicated cloud server.
Databases employed in the cloud station can be specified through framework properties.
After activating the application, controllers reside in the cloud base station where they
deal with requests from the outside. Functions in services are periodically performed for
transforming data between the multistage databases.

The implemented framework supports not only the generation of necessary items but
also their deployment. After the items are ready, the required controller and services
are activated with the specified preferences on the cloud. On the other hand, even
though, ideally, conventional querying options would be available for the RTC that
is oriented to read data from the RDR, the implemented framework has limitations.
The current implementation supports just a few representative options, including the
timestamp-based search operation that is embedded in every element.

5 Case studies

In this section, case studies that employ the implemented framework are presented from
different perspectives. Since we focus on demonstrating how the required parts of the
robot system and the cloud base station are created and deployed seamlessly by the
framework, we selected two simple ad-hoc applications, one of which is related to data
transformation and the other of which is oriented towards cooperation between different
robots.

5.1 Case study 1

5.1.1 Concept

In the first case study, our focus was on the automatic generation of required components
from the data definition in the ontology.



16 Y. Watanobe et al.

5.1.2 Scenario

The goal of this case study was to construct an environment in which a robot
continuously generates its position in the seconds format of latitude/longitude, and
another robot (or station) intermittently reuses the information in the degree format
(DEG) of latitude/longitude. Accordingly, in this scenario, two object types were
defined in the ontology, including PositionInSecond and PositionInDEG. A mapping
SecondToDEG, which is a relationship used for the conversion between the above
objects, was also involved in the ontology.

Figure 5 A sub-tree of the ontology used in the case study (see online version for colours)

Figure 6 Snapshot of the RTSystemEditor used for the case study (see online version
for colours)

5.1.3 Experiment

The ontology data used for this case study is shown in Figure 5. (in fact, this is a
sub-tree of the ontology, which represents data involved in the project as a whole). The
framework automatically generated the following parts based on the specification of the
objects in OWL (XML):



Architecture and framework for data acquisition in cloud robotics 17

• WriteRTC: This is an RTC that receives objects of PositionInSecond and sends
them to the cloud base station.

• ReadRTC: This is an RTC that obtains objects of PositionInDEG by the use of
specified keys from the cloud base station.

• PositionInSecondEntity.java: This is an entity class of PositionInSecond. The
corresponding PositionInSecondRepository class accompanies.

• PositionInDEGEntity.java: This is an entity class of PositionInDEG. The
corresponding PositionInDEGRepository class accompanies.

• WriteService.java: This is a service class used to receive objects of
PositionInSecond from the client system and then save them into the
corresponding repository.

• ReadService.java: This is a service class used to obtain objects of PositionInDEG
via keys obtained from the corresponding repository and then return them to the
client system.

• SecondToDEGService.java: This is a service class used to convert objects of
PositionInSecond to the corresponding objects in PositionInDEG.

• Other items: These include other parts, including controllers and an application
class, which are used to activate and operate the system on the cloud.

After these parts were created, the framework deployed and activated the application
that is accompanied by the components for web and database layers. To perform the
experiment, an additional RTC (named GeneratorRTC) that randomly generates positions
in the latitude/longitude seconds format was created. The GeneratorRTC is used to
imitate a sensor device connected to other components in the robot environment. In
addition, we slightly modified a ReadRTC so that we can confirm the result sets
obtained from the database by using specified keys as standard output to the console at
the local station. In fact, the modified ReadRTC can also be connected to other RTCs
that need data and make inquiries to the cloud base station.

These three components were located in RTSystemEditor, which is the dedicated
integrator for OpenRTM-aist, and then activated in the local base station in order to
observe data management. To provide an overview of this case study, Figure 6 shows
a snapshot of an RTSystemEditor in which all components have been activated. We
confirmed that the position data generated at the robot system (client-side) were stored
in the first-order database in the cloud, transformed in accordance with the mapping,
and obtained from the second-order database so they could be properly reused at the
client side.

5.2 Case study 2

5.2.1 Concept

In the second case study, our focus was on the following important aspects:

• automatic generation from the definition in the program layer

• promotion of reuse of legacy software components in the library



18 Y. Watanobe et al.

• cooperation between different robots through cloud data.

The first point shows that our architecture and framework maintains options that can
be used to construct an environment through programming in a conventional language
that is likely to be familiar to the developers. Although the specification of data through
ontology is required in order to provide a standard scenario definition method for
non-programmers, the coding is also attractive to developers. This can be important
because a writing program is much more convenient when it is necessary to define
sophisticated transformation processes between different data types for the multistage
databases, as well when integrating the AI engines with available libraries.

The second point shows that our framework can export software components that are
compatible with existing legacy components that were used in corresponding projects.
In this case study, we reused some legacy components previously developed in our
project, which involved constructing an RTC software library based on OpenRTM
(Ando et al., 2011). That library is expected to contribute to facilitating reliability and
productivity, as well as to enhancing cost reductions and component reusability. So far,
a total of 139 RTCs for different types of robots have been developed and registered
in RTC-Library-FUKUSHIMA (https://rtc-fukushima.jp/) by around ten companies and
organisations, as described in Subsection 3.1. Examples of the registered components
added thus far include those related to disaster analysis from an application perspective;
crawlers, manipulators, and drones from technological perspectives; cameras, radars,
gyros, accelerators, and inertial measurement units (IMUs) from sensing perspectives;
and image processing and map construction components from algorithmic perspectives.
As such, these entries are contributing to the development of robot systems by third
parties, as well as helping to foster robot engineers through their use as educational
materials.

To demonstrate the third point, two Lego EV3s, which are small crawler robots,
were used in this case study. Although the EV3 robot is often considered a child’s toy,
it is equipped with a wide variety of functions, sensors, and related components. As
a result, the robot contributes significantly to the simulation and educational aspects
of our library, particularly since it shares a number of common control interfaces with
different practical large-scale robots.

5.2.2 Scenario

In this scenario, an EV3 (EV3-A) attempts to traverse a field that contains some
obstacles. While crawling, the robot avoids those obstacles using data collected via
its ultrasonic sensor. Intermittent changes to its current velocity, as defined by the
vector (vx, vy, va), are transmitted along with an attached timestamp to the first-order
database on the cloud. The data in the vector format are then transformed into command
data represented as (duration, vx, vy, va) in the second-order database on the cloud.
Separately, another EV3 (EV3-B) starts from the common origin point and direction
and is automatically controlled to follow the movements of EV3-A based on command
data received from the cloud. The important point to note here is that the movements
of EV3-B, which does not have any sensors, are controlled in real-time by cloud data
with just a slight delay (or by batch processing).



Architecture and framework for data acquisition in cloud robotics 19

5.2.3 Experiment

The framework exported the following items through the specifications of the three
classes in Java.

• WriteRTC: This is the RTC that receives EV3-A velocity data and sends the
information to the cloud base station.

• ReadRTC: This is the RTC that obtains commands for EV3-B from the cloud
base station.

• VelocityEntity.java: This is the entity class of the velocity. The corresponding
VelocityRepository class accompanies.

• CommandEntity.java: This is the entity class of the command. The corresponding
CommandRepository class accompanies.

• WriteService.java: This is the service class that is used to receive the velocity data
from the client system and save that information into the corresponding repository.

• ReadService.java: This is the service class that is used to obtain the command data
from the corresponding repository and return that information to the client system.

• TransformerService.java: This is the service class that is used to convert objects
of velocity to the corresponding objects in command.

• Other items: These are other parts, including controllers and an application class,
which are used to activate and operate the system on the cloud.

Figure 7 Snapshot of an RTSystemEditor in use for saving data to the cloud
(see online version for colours)

Figure 8 Snapshot of an RTSystemEditor in use for searching data from the cloud
(see online version for colours)

The case study reused the following components extracted from the library.

• EV3 control: This is an RTC that has functions for controlling the motors of an
EV3 and outputting information from its sensors.



20 Y. Watanobe et al.

• EV3 ultrasonic: This is an RTC that outputs a velocity vector based on given
values of the ultrasonic sensor data obtained from an EV3.

Focusing on EV3-A, in order to demonstrate the case study, Figure 7 shows a snapshot
of RTSystemEditor in which components for sending data are activated. In this system,
when the RTC detects a velocity change via the ultrasonic sensor value received
from EV3-A, it sends the adjusted velocity as (vx, vy, va) along with a timestamp
to the WriteRTC (as well as back to the EV3-A). In contrast, focusing on EV3-B,
Figure 8 shows the components used for receiving data. Here, we can see that EV3-B
is controlled by data from ReadRTC (cloud data).

Note that, in order to provide a more complete explanation, Figures 7 and 8 show
the experiment from different perspectives. However, they can be integrated to show that
the two EV3s are involved at the same time. Furthermore, although we acknowledge
that there is a slight gap between the final positions of the two EV3s, our experiment
confirmed that EV3-B could follow EV3-A by obtaining command cloud data that had
originally been generated by EV3-A.

6 Discussion

Although the ad hoc applications used in the abovementioned case studies were rather
simple, they allowed us to demonstrate that the proposed framework could seamlessly
automate the required steps for creating, deploying, and activating components.
Therefore, through these case studies, we have also demonstrated that a robot system
with data acquisition functions can be constructed automatically via very simple and
limited operations and without excessive labour.

In this section, we focus on the productivity, availability, sustainability, scalability,
and transparency of our architecture and framework. However, although we will discuss
some limitations, we acknowledge that a variety of technical issues related to security,
accuracy, and performance levels have not been addressed, because they are out of scope
for this paper.

6.1 Productivity

As mentioned above, there are a number of operations that can be laborious if it is
necessary for a developer to create a robot system with data acquisition capabilities from
scratch. However, by employing our proposed framework, those labors can be drastically
reduced. In the abovementioned case studies, the only things the developers needed to
do were to select data, define data, or perform transformations. For example, in the
second case study, the developer prepared two programs for data and one program for
their transformation, after which the framework exported the corresponding two RTCs
for the developer on the client side. In addition, on the server side, the framework
generated the corresponding two repositories (databases) through entity classes and
controllers that bridge the RTCs and the repositories, and then deployed them on the
server. Furthermore, the framework launched the cron process to transform data. In
summary, based on a limited number of items, the framework automatically generated
a number of required components for both the client and server sides.



Architecture and framework for data acquisition in cloud robotics 21

6.2 Availability

One of the attractive points of our framework is that it exports reusable software
components that are compatible with existing legacy components used in corresponding
projects. This means that even though the data format, communication interface, and
host information will need to be adjusted by changing the system configuration and
parameters for each project, the exported components can be directly connected to
other components. This is because the interoperability of different components on the
distributed system is based on the middleware. On the other hand, since data from any
of the stages on the RDR can be obtained through the RESTful API, it is available for
other artificial information systems in addition to the target robot environment.

6.3 Sustainability

The proposed framework is based on a technology-independent architecture that is not
expected to be significantly affected by future trends. This means that developers need
not be biased toward any particular platforms and programming languages. As shown
through the first case study, at the highest user interface, the developer can define their
data through ontology with a simple GUI. Here, it should be noted that the developers
do not need to understand the construct in XML format because they can create and
manipulate ontology data graphically in the tree structure. Optionally, they can also
define the data and perform mapping through a class and function, respectively, in
dedicated modern programming languages. Furthermore, exported components for both
the client and server sides can be changed depending on technological trends in the
future. In our architecture and related framework, developers can choose the types of
components to be used on the client side (RTCs, ROS nodes, etc.) and do not need to
consider how the server side is implemented because of the architecture’s transparency.

6.4 Scalability

Herein, two case studies were demonstrated through rather simple objects and a toy
system in order to focus on validating the mechanisms of the automation process.
However, we should also clarify the scalability of our proposed approach. First of all, it
should be noted that the ontology defined at the very beginning of a project can include
all possible entities and their relationships as a whole. Additionally, for each specific
scenario, the system integrator can choose the required object subsets from the ontology
in order to develop and deploy the system. Since the scale of the generated components
and repositories depends on the selected subsets, a larger system can, in principle, be
constructed by using the same framework.

In terms of case studies for demonstrating a practical environment, depending on
the availability (interoperability) of the components, the toy systems can be replaced
with practical equipment such as large-scale double-armed robots. In fact, large-scale
double-armed robots, middle-size crawler robots, and EV3s can all be controlled using a
common game controller, which is also registered in our library. Regarding sensors and
data, the inputs used in the case studies can be replaced with practical sensor data such
as point sets obtained by LiDAR, which can be useful for functions such as creating 3D
maps. Another important aspect of the exported components is that they can easily be
integrated into simulators alongside other components.



22 Y. Watanobe et al.

6.5 Transparency

Transparency is one of the most valuable features for examining different perspectives
in user-oriented product development. In the environment deployed by the proposed
framework, any existing components from the user side can, in principle, transparently
access data in the cloud repository through the exported components. Furthermore,
since the items generated on the server side are automatically deployed on the cloud,
developers will not need to consider the technical details related to implementations,
operations, or how the server side is implemented. Thus, developers can focus on the
client side system integration by means of standard knowledge representation.

6.6 Limitations

In this paper, we focused on the automation processes used for creating components.
However, while we considered the minimum authentication processes necessary for
API (controllers), security issues related to the components and their corresponding
controllers should be thoroughly considered in terms of network protocols and
encryption. Additionally, for discussions related to accuracy and performance, it is
important to remember that they depend on the seriousness of the transformers used for
the multistage databases. In other words, for the control of autonomous robots (like those
used in the second case study), accuracy and performance can be improved by adding
or enhancing transformers while considering self-location estimations and SLAM.

7 Conclusions

In this paper, we presented a data acquisition architecture and framework for cloud
robotics. In our proposed cloud robotics framework, a robot system can be organised by
using a set of reusable legacy software components, as well as special data acquisition
components, which then access the RDR on the cloud. These repositories should
be organised as multistage databases in order to permit data manipulations between
unstructured and structured data. Although there are numerous tasks, the proposed
framework can reduce the burden needed to create many of the related software parts,
schemas, objects, and settings by automatically generating the required executable codes.
As a result, the framework can improve productivity when developing robot systems
that actively engage in data acquisition, as well as assist in performing experiments
involving valuable information resources. Herein, two case studies were presented to
demonstrate that the framework seamlessly generates all of the required items, from
data definition to construction, for an operable robot system utilising data acquisition
on the cloud. However, while we have demonstrated the productivity, availability, and
sustainability of the proposed architecture and framework, there are still issues related
to authentication methods and other security issues for deploying services on the cloud
that must be resolved. Accordingly, in our future work, we will conduct case studies
with mature transformers for real applications while also considering performance and
accuracy issues.



Architecture and framework for data acquisition in cloud robotics 23

References

Al-Masri, E. (2018) ‘Enhancing the microservices architecture for the internet of things’, Proceedings
of the 2018 IEEE International Conference on Big Data (Big Data), pp.5119–5125.

Ando, N., Kurihara, S., Biggs, G., Sakamoto, T. and Nakamoto, H. (2011) ‘Software deployment
infrastructure for component based RT-systems’, Journal of Robotics and Mechatronics, Vol. 23,
No. 3, pp.350–359.

Beetz, M., Tenorth, M. and Winkler, J. (2015) ‘OPEN-EASE – a knowledge processing service
for robots and robotics/AI researchers’, Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp.1983–1990.

Bergamini, L., Sposato, M., Pellicciari, M., Peruzzini, M., Calderara, S. and Schmidt, J. (2020)
‘Deep learning-based method for vision-guided robotic grasping of unknown objects’, Advanced
Engineering Informatics, Vol. 44, p.101052 [online] https://doi.org/10.1016/j.aei.2020.101052.

Bozcuoglu, A.K., Kazhoyan, G., Furuta, Y., Stelter, S., Beetz, M., Okada, K. and Inaba, M. (2018)
‘The exchange of knowledge using cloud robotics’, IEEE Robotics and Automation Letters,
Vol. 3, No. 2, pp.1072–1079.

Chen, W., Yaguchi, Y., Naruse, K., Watanobe, Y. and Nakamura, K. (2018a) ‘QoS-aware robotic
streaming workflow allocation in cloud robotics systems’, IEEE Transactions on Services
Computing, DOI: 10.1109/TSC.2018.2803826.

Chen, W., Yaguchi, Y., Naruse, K., Watanobe, Y., Nakamura, K. and Ogawa, J. (2018b) ‘A study
of robotic cooperation in cloud robotics: architecture and challenges’, IEEE Access, Vol. 6,
pp.36662–36682, DOI: 10.1109/ACCESS.2018.2852295.

Ezzeddine, M., Morcel, R., Artail, H., Saghir, M.A.R., Akkary, H. and Hajj, H. (2018) ‘RESTful
hardware microservices using reconfigurable networked accelerators in cloud and edge
datacenters’, Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking
(CloudNet), pp.1–4.

Filip, I.D., Postoaca, A.V., Stochitoiu, R.D., Neatu, D.F., Negru, C. and Pop, F. (2019) ‘Data
capsule: representation of heterogeneous data in cloud-edge computing’, IEEE Access, Vol. 7,
pp.49558–49567, DOI: 10.1109/ACCESS.2019.2910584.

Fiorini, S.R., Bermejo-Alonso, J., Gonçalves, P., de Freitas, E.P., Olivares Alarcos, A., Olszewska, J.I.,
Prestes, E., Schlenoff, C., Ragavan, S.V., Redfield, S., Spencer, B. and Li, H. (2017) ‘A suite of
ontologies for robotics and automation’, IEEE Robotics Automation Magazine, Vol. 24, No. 1,
pp.8–11.

Funayama, Y., Nakamura, K., Tohashi, K., Matsumoto, T., Sato, A., Kobayashi, S. and Watanobe, Y.
(2020) ‘Automatic analog meter reading for plant inspection using a deep neural network’,
Artificial Life and Robotics, Vol. 26, No. 2, pp.1–11.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. and Bennamoun, M. (2020) ‘Deep learning for 3D point
clouds: a survey’, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.1–27,
DOI: 10.1109/TPAMI.2020.3005434.

Haidu, A., Bebler, D., Bozcuoglu, A.K. and Beetz, M. (2018) ‘KnowRobSIM – game engine-enabled
knowledge processing towards cognition-enabled robot control’, Proceedings of the 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.4491–4498.

Hildebrandt, C., Kocher, A., Kustner, C., Lopez-Enriquez, C., Muller, A.W., Caesar, B.,
Gundlach, C.S. and Fay, A. (2020) ‘Ontology building for cyber-physical systems: application in
the manufacturing domain’, IEEE Transactions on Automation Science and Engineering, Vol. 17,
No. 3, pp.1266–1282.

Hunziker, D., Mohanarajah, G., Waibel, M., D’Andrea, R. and Rapyuta, R. (2013) ‘The RoboEarth
cloud engine’, Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pp.438–444.

IEEE Standard Ontologies for Robotics and Automation (2015) IEEE Std 1872-2015, pp.1–60.



24 Y. Watanobe et al.

Inversion of Control Containers and the Dependency Injection Pattern [online] https://www.
martinfowler.com/articles/injection.html (accessed 14 October 2020).

Kato, Y., Izui, T., Tsuchiya, Y., Narita, M., Ueki, M., Murakawa, Y. and Okabayashi, K. (2011)
‘RSi-cloud for integrating robot services with internet services’, Proceedings of the 37th Annual
Conference of the IEEE Industrial Electronics Society (IECON 2011), pp.2158–2163.

Nargesian, F., Zhu, E., Miller, R.J., Pu, K. and Arocena, P.C. (2019) ‘Data lake management:
challenges and opportunities’, Proceedings of the VLDB Endowment, August, pp.1986–1989.

Narita, M., Murakawa, Y., Akiguchi, C., Kato, Y. and Yamaguchi, T. (2009) ‘Push communication
for network robot services and RSi/RTM interoperability’, Proceedings of the 2009 IEEE
International Conference on Fuzzy Systems, pp.1480–1485.

Niemueller, T., Lakemeyer, G. and Srinivasa, S.S. (2012) ‘A generic robot database and its application
in fault analysis and performance evaluation’, Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp.364–369.

Ogitsu, T. and Mizoguchi, H. (2015) ‘Practical research of RT-middleware in intelligent vehicles’,
International Conference on Connected Vehicles and Expo (ICCVE), pp.342–343.

OpenRTM [online] https://github.com/OpenRTM (accessed 14 October 2020).
OpenRTM-aist [online] https://www.openrtm.org/openrtm/ (accessed 14 October 2020).
OWL Web Ontology Language [online] https://www.w3.org/TR/owl-features/ (accessed 14 October

2020).
Park, Y., Choi, J. and Choi, J. (2016) ‘A system architecture to control robot through the acquisition

of sensory data in IoT environments’, Proceedings of the 13th International Conference on
Ubiquitous Robots and Ambient Intelligence (URAI), pp.749–752.

Popov, V.L., Ahmed, S.A., Topalov, A.V. and Shakev, N.G. (2018) ‘Development of mobile robot
target recognition and following behaviour using deep convolutional neural network and 2D
range data’, IFAC-PapersOnLine, Vol. 51, No. 30, pp.210–215.

Protege [online] https://protege.stanford.edu/ (accessed 14 October 2020).
ROBOTS [online] https://robots.ieee.org/learn/types-of-robots/ (accessed 14 October 2020).
RTC-Library-FUKUSHIMA [online] https://rtc-fukushima.jp/ (accessed 14 October 2020).
Saha, O. and Dasgupta, P. (2018) ‘A comprehensive survey of recent trends in cloud robotics

architectures and applications’, Robotics, Vol. 7, No. 3, p.47.
Spring [online] https://spring.io/ (accessed 14 October 2020).
Tsuichihara, S., Yamaguchi, A., Takamatsu, J. and Ogasawara, T. (2015) ‘Using a weighted

pseudo-inverse matrix to generate upper body motion for a humanoid robot doing household
tasks’, Proceedings of the 2015 IEEE Conference on Robotics and Biomimetics, pp.333–338.

Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Lopez, D.G., Haussermann, K.,
Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O. and
Van de Molengraft, M.J.G.R. (2011) ‘RoboEarth – a World Wide Web for robots’, in IEEE
Robotics & Automation Magazine, Vol. 18, No. 2, pp.69–82.

Wang, R., Mou, X., Sun, J., Liu, P., Guo, X., Wo, T. and Liu, X. (2020) ‘Cloud-edge collaborative
industrial robotic intelligent service platform’, 2020 IEEE International Conference on Joint
Cloud Computing, pp.71–77.

Watanobe, Y., Yaguchi, Y., Miyaji, T., Yamada, R. and Naruse, K. (2019) ‘Data acquisition framework
for cloud robotics’, 2019 IEEE 10th International Conference on Awareness Science and
Technology (iCAST), pp.1–7.

Williams, K., Li, L., Khabsa, M., Wu, J., Shih, P.C. and Giles, C. (2014) ‘A web service for scholarly
big data information extraction’, Proceedings of the 2014 IEEE International Conference on Web
Services, pp.105–112.

World Robot Summit (WRS) [online] https://worldrobotsummit.org/en/ (accessed 14 October 2020).



Architecture and framework for data acquisition in cloud robotics 25

Yaguchi, Y., Nitta, Y., Ishizaka, S, Tannai, T., Mamiya, T., Naruse, K. and Nakano, S. (2017)
‘Formation control for different maker drones from a game pad’, Proceedings of the 26th
IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN),
pp.1373–1378.

Yoshino, D., Watanobe, Y., Yaguchi, Y., Nakamura, K. and Anma, K. (2017) ‘Application possibility
of OpenRTM-aist-based integrated robot systems using CORBA interfaces and brokered
Pub/Sub messaging interfaces’, The Proceedings of JSME annual Conference on Robotics and
Mechatronics (Robomec), pp.2A2–J08.

Yoshino, D., Watanobe, Y., Yaguchi, Y., Nakamura, K., Ogawa, J. and Anma, K. (2018) ‘Provision
of remote management infrastructure for RT systems using mosquitto MQTT message broker’,
The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec),
pp.2A1–G08.

Yoshino, D., Watanobe, Y., Yaguchi, Y., Nakamura, K., Ogawa, J. and Naruse, K. (2019) ‘AMQP
communication interface on RT middleware for highly-reliable IoR system construction’,
The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec),
pp.2A1–M09.


