Vibration analysis of half rail vehicle model with 10 degrees of freedom based on mechanical-electrical analogy theory
by Fatih Pehlivan; Ismail Esen; Cihan Mizrak
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 28, No. 4, 2021

Abstract: Aim of this paper is to show that vibrations of 10 degree of freedom (10 DOF) half rail vehicle models obtained by both mechanical mechanism and equivalent electrical circuit are identical. Firstly, the system was modelled and then a free body diagram was formed. Afterwards, motion equations of the system were determined using Lagrange's method, mechanical circuit was constructed using force equations and its equivalent electrical circuit was obtained using Kirchoff current law (KCL) and force-flow similarity. Then, a schema was formed by means of MATLAB Simulink to analyse the vibrations of the rail vehicle model. To make simulations, the speed of the rail vehicle model was selected as 400 km/h. As input, track irregularities in American Railway Standard and non-random irregularities were applied to all the wheels separately. As a conclusion, it was observed that the signals taken by both the mechanical and its equivalent electrical circuit appeared similar and the vibration analysis of a complex mechanical system can be modelled not only mechanically but also electrically.

Online publication date: Mon, 18-Oct-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com