Modelling of nonlinear dynamic stability in cylindrical grinding process
by Amon Gasagara; Wuyin Jin; Angelique Uwimbabazi
International Journal of Modelling, Identification and Control (IJMIC), Vol. 36, No. 4, 2020

Abstract: Cylindrical grinding process is a complex phenomenon with several vibration excitation parameters that lead to the grinding wheel oscillation and workpiece deflection. In this work, a new model of the cylindrical grinding process vibrations is developed to analyse a particular type of dynamic instability induced by the in-feed rate. The grinding wheel is modelled as a constant speed moving oscillator excited by the grinding forces to provide a time-varying excitation load to induce the workpiece deflection. The workpiece is regarded as a simply supported non-uniform Euler-Bernoulli beam. The numerical analysis is used to obtain the governing equations of the process dynamics. MATLAB is used to obtain the dynamic response of the process. The experiment is used to validate the model simulation results. The results of the tested grinding mode show that the dynamic stability of the process is improved at the in-feed rate of 0.01 mm/s while reducing the grinding time.

Online publication date: Thu, 09-Sep-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Modelling, Identification and Control (IJMIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com