Characteristics and soot formation in laminar liquefied petroleum gas flames in air crossflow
by S. Muthu Kumaran; Vasudevan Raghavan
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 21, No. 5, 2021

Abstract: Crossflow non-premixed LPG-air flames display stability issues at higher air velocities. They also emit notable amount of soot. To improve the flame stability, obstacles such as backward facing steps, are used. In this work, laminar LPG-air crossflow flames are studied using a comprehensive numerical model incorporating multi-component mass transfer with thermal diffusion, diffusion energy source, sub-models for soot formation, its oxidation and radiation losses due to gas and soot. For the cases without backward facing step (baseline cases), the flame is unstable after a given air velocity. Flames are much stable over an increased air velocity, when a backward facing step is used. In these cases, the net soot production is relatively higher when compared to baseline cases as a result of increased residence time in the wake of the step. The location of the step from the fuel injection point also has its effects on soot formation.

Online publication date: Tue, 07-Sep-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com