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Abstract: In our field of neuro-rehabilitation, it is often difficult to have 
patients endure a long session of training, and we seek an estimate of minimum 
practice trials. In such cases, motor learning measurements across trials are 
usually exponentially decaying transient signals. Here we employed  
Monte-Carlo methods to determine the minimum number of samples required 
from transient responses. We tracked the accuracy of recovery of synthesised 
data to reveal a prescription for the minimum number of samples for a robust 
identification of the underlying learning process, given preliminary estimates of 
the time constant and noise levels. Our results revealed a systematic 
relationship for the minimum number of samples required from transient 
signals that can be used as a stopping criteria for data collection. We also 
evaluated these results by using a past motor learning study and determining 
the minimum number of required samples (trials) to best estimate learning 
curves. 
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1 Introduction and background 

In an age where a very large amount of empirical data is often employed to identify 
models (Ljung, 2017), there are still many situations where data is costly,  
time-consuming, or otherwise difficult to gather in large quantities. The initial challenge 
is to determine the minimum amount of data needed. This is true in a variety of 
application areas, including neuro-rehabilitation and motor learning, neural adaptation, 
neural coding (Kim et al., 2011; Lewi et al., 2009), computer adaptive testing, and gains 
in human performance (Ding et al., 2018; Kim et al., 2017; Suzuki and Furuta, 2012). 
Moreover, data is always accompanied by some level of unavoidable noise, which 
adversely affects model estimations. To overcome uncertainty, multiple measurements 
and sometimes repeated experiments are required to improve model estimations. In our 
field of neuro-rehabilitation, it is often difficult to have a person endure a long session of 
training, and we seek an estimate of minimum practice trials. In such cases, motor 
learning measurements across trials are usually exponentially decaying transient signals. 
We postulate that there is a systematic limit on the number of samples required to 
robustly model the learning process. 

Even when measurement samples span a broad range of variation of system 
behaviours, each successive observation yields progressively smaller gain in the model 
estimation (Ljung and Söderström, 1983). Initially, each new observation provides 
relatively novel information, resulting in significant marginal improvement for the 
estimation. However, as more samples are acquired, the estimation may not continue to 
improve because the data observed so far have sufficiently captured system behaviours, 
and any additional observation provides redundant information. Furthermore, the sample 
acquisitions are sometimes costly, and acquiring samples long after system behaviours 
have plateaued often leads to overfitting of the noise. Hence the identification might 
suffer from too much data. Therefore, a guiding framework for the samples required can 
greatly benefit the model identification.  

The simplest identification method employs a first-order linear model at an operating 
point to gain primary knowledge about important system characteristics such as 
dominating time constants, time delay, and stationary gain (Ljung, 2017). For linear  
time-invariant systems, the step and impulse functions are used to excite transience that 
reveals system characteristics. The initial value problems where a system responds to 
initial conditions also exhibit transience. The time-series of these transient responses can 
be fitted to an exponential function: 
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( ) ( )2( ) exp 0, ,y t A t τ B σ= ∗ − + +  (1) 

where A, B and τ are related to the characteristic system parameters and   represents 
Gaussian noise with zero mean and σ2 variance. Here if less than three time-series 
samples of the transient responses are acquired, the first-order approximation of a system 
is underdetermined. Only in an ideal case when there is no observation noise, the system 
parameters can be approximated using three samples. However, in the presence of noise, 
more than three samples must be acquired to approximate the system parameter values 
with certainty by also estimating the noise statistics from the observations. So, there must 
be a point of diminishing returns for the number of such time-series observations beyond 
which the estimation of the noise statistics and the characteristic parameter values do not 
significantly improve. 

It is well recognised that the accuracy of parameter estimation depends on the  
signal-to-noise ratio (SNR), i.e., the level of the desired signal to the level of noise. 
Higher SNR yields better estimates. In the transient response, the desired signal is 
detectable above the noise level immediately after the onset of the step or impulse inputs. 
However, as the transient decays, the influence of noise becomes more dominant, 
deteriorating fit quality. Therefore, early observations should be preferred for such model 
estimation. Additionally, the rate at which the transient response decays depends on 
system characteristics, and thus it is conceivable that the time constant, τ, would also 
affect the minimum number of samples required (see Appendix for Fisher information 
analysis for this problem). 

In this simulation paper, we attempt to identify the point of diminishing returns for 
the number of samples from transient responses beyond which the exponential regression 
does not significantly improve. We assumed normalised transient responses and 
generated data for various combinations of τ and SNR. We then tracked the improvement 
in accuracy of the regression as we incrementally included additional samples. We 
repeated the regression analysis on independent randomly sampled data using  
Monte-Carlo methods. The results show a systematic relationship between the time 
constant and SNR of transient responses and the point of diminishing returns for the 
number of samples. We also evaluated these results by using a past motor learning study 
and determining the minimum number of required samples (trials) to best estimate 
learning curves of a motor skill. 

2 Methods 

The first-order transient responses can assume various forms, but they can be normalised 
to exponential decay functions. Consider the following normalisation of equation (1): 

( ) ( ) ( ) ( )2( ) exp 0, ,y t B σ A σ t τ σ σ− = ∗ − +  (2) 

( )( ) exp (0, 1),Y t SNR t τ= ∗ − +  (3) 

where Y(t) is the normalised transient response with normally distributed random noise 
(0, 1)  and A/σ ratio is SNR. 
Using equation (3), we generated data using known values of τ and SNR for t = 0 to 

400 with an increment of 1 (sample). This we denote as the true signal [Figure 1(a)]. τ 
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values ranged from 5 to 30 with increments of 1 and from 30 to 100 with increments of 5. 
SNR values ranged from 0.5 to 3 with increments of 0.1 and from 3 to 10 with increments 
of 0.5. We then added normally distributed random noise (mean 0 and standard deviation 
1) to the true signal. 

Figure 1 Summary of methods used to identify the point of diminishing returns for the number of 
samples required from the transient responses to accurately perform exponential 
regression (see online version for colours) 

 

 
Notes: (a) We first generated a true signal (blue curve) using equation (3) and known 

SNR and τ values. Next, we added normally distributed random noise to the true 
signal to generate data (red circles). 
(b) We repeatedly performed the exponential regression by incrementally 
including an additional data sample (green region). 
(c) We calculated the accuracy of the regression per each sample included using 
the SSE between the fitted curve and the true signal across all 401 samples. Using 
the Monte-Carlo method, we repeated the regression analysis on 100 independent 
random samplings of added noise. Each coloured curve shows SSE for a Monte-
Carlo repeat. 
(d) 10th–90th percentile distribution, median, and mean of SSE across all Monte-
Carlo repeats are shown as shaded red region, dark red line and dotted black line, 
respectively. We identified the point of diminishing returns as the number of 
samples included when the 90th percentile of SSE crossed 105% of its minimum 
(yellow star). 

We began nonlinear least-squares regression using equation (3) on the first three data 
samples. We then incrementally included a sample and performed regression as we 
tracked the accuracy [Figure 1(b)]. The regression was performed using the  
Levenberg-Marquardt method within a three-fold simulated annealing loop. We repeated 
the regression analysis on 100 independent random samplings of added noise using the 
Monte-Carlo method. Overall, this resulted in 67,071,900 independent regressions (41 τ 
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levels × 41 SNR levels × 399 incrementally including an additional sample × 100  
Monte-Carlo repeats). We calculated the accuracy of the regression per each sample 
included and per each Monte-Carlo loop using the sum of squared error (SSE) between 
the fitted curve and the true signal across all 401 samples [Figure 1(c)]. 

Our objective was to measure the point of diminishing returns for the number of 
samples included in the regression beyond which the accuracy does not significantly 
improve. We calculated the 90th percentile of SSE across all Monte-Carlo repeats  
[Figure 1(d)]. We used the 90th percentile of SSE over mean because the distribution of 
SSE per each sample included was not normally distributed. Furthermore, the 90th 
percentile of SSE not only captured the accuracy of the regression but also accounted for 
the variability due to random noise sampling across Monte-Carlo loops. We filtered the 
90th percentile of SSE twice using a moving average with a centred-sliding-window of 
31 samples. Next, we identified the point of diminishing returns (as the number of 
samples included) when the 90th percentile of SSE crossed 105% of its minimum (Nopt). 
We used 105% of minimum because we noticed that oftentimes the 90th percentile of 
SSE had a long tail where the SSE did not decrease significantly. A similar metric known 
as the settling time is often used in control theory that is defined as the time required for 
the signal to reach within range of a certain percentage (usually 5%) of the final value 
(Tay et al., 1998). 

We used an affine ANOVA model to analyse whether Nopt had significant non-zero 
slopes (alpha = 0.05) along SNR and τ. We found that Nopt had a linear trend with τ and an 
exponential trend with SNR. Therefore, we fitted a surface to Nopt with the following 
functional form: 

( ) ( )1 2 3 4 5( , ) exp ,optN SNR τ x x τ x τ x x SNR= + ∗ + ∗ + ∗ ∗  (4) 

where x1, x2, x3, x4, x5 are coefficients, and SNR and τ are known values of the normalised 
transient signals for which Nopt was measured. 

We also measured the accuracy of the regression using the 90th percentile of SSE at 
the point of diminishing returns (Aopt). We used an affine ANOVA model to analyse 
whether Aopt had significant non-zero slopes (alpha = 0.05) along SNR and τ. We found 
linear trends along both SNR and τ. Thus, we fitted a linear surface to Aopt with the 
following functional form: 

1 2 3( , ) ,optA SNR τ y y SNR y τ= + ∗ + ∗  (5) 

where y1, y2, y3 are coefficients, and SNR and τ are known values of the normalised 
transient signals for which Aopt was measured. The surfaces were fitted using nonlinear 
least-squares regression with the Trust-Region method. All analysis was performed using 
MathWorks MATLAB 2017b. 

Finally using dataset from a past study (Patton et al., 2013), we evaluated the results 
about the optimal number of required samples (trials) to best estimate learning curves of a 
motor skill. Briefly, 16 healthy individuals were trained to make reaching movements 
with 30 degrees of visuomotor rotation, and the goal of the study (Patton et al., 2013) was 
to test the effects of various error-augmenting feedback on the rate and extent of learning. 
The progression of visuomotor adaptation within the training phase was tracked by 
measuring the maximum perpendicular error between reaching movements and ideal 
straight-line (from start to goal position) at intermittent ‘catch’ trials. Such motor learning 
measurements across trials are usually exponentially decaying transient signals. While 



   

 

   

   
 

   

   

 

   

   294 P.N. Parmar and J.L. Patton    
 

    
 
 

   

   
 

   

   

 

   

       
 

the training session in that study (Patton et al., 2013) involved 406 total trials, our goal 
was to determine whether a lesser (minimal) amount of trials would have sufficed to fit 
the learning curves. 

Figure 2 Flowchart for our resulting stopping criteria for data collection from transient signals 

 

In order to determine the optimal number of samples (trials) from a transient signal using 
equation (4), prior knowledge about underlying time constant and SNR is required. 
However, these can be sequentially calculated from the so-far observed data as the data is 
being acquired. For our evaluation of a past motor learning dataset (Patton et al., 2013), 
we started with the first three movement error data from the training phase and performed 
regression using equation (1) for each subject. Next, we estimated SNR and time constant 
from the fitted parameters as in equations (2) and (3). We applied a lowpass Butterworth 
filter (first-order, zero-phase, normalised cut-off frequency of 0.02) to SNR and time 
constant along the number of trials included in the regression. Next, using equation (4), 
we estimated a 95% prediction interval for the optimal number of trials required (Nopt). 
Next, we incrementally allowed additional trial observation data in the regression while 
the upper limit of the prediction interval was greater than the number of trials included in 
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the regression. We used the upper limit of the prediction interval because it provided the 
largest statistical estimate for the optimal number of trials required. We set the stopping 
criteria for further inclusion of data in the regression when the upper limit of the 
prediction interval was less than the number of trials included in the regression *( ).optN  
Note that for this particular dataset (Patton et al., 2013), movement errors were 
intermittently sampled across trials, and thus regression estimates did not change during 
the trials gaps when observation data was not available. A flowchart in Figure 2 
summarises this method for determining stopping criteria for data collection from 
transient signals. Finally, we computed percent error using difference between the 
estimated model parameter values at the stopping criteria *( )optN  and the best possible 
model parameter values. The best possible model parameter values were estimated using 
the regression on all 406 trial observations. 

3 Results 

We incrementally included samples of data and performed regressions to identify the 
point of diminishing returns beyond which the accuracy of estimating the true transient 
signal does not significantly improve. The accuracy as measured by SSE between the 
fitted signal and the true signal improved as more sample data were included in the 
regression. However, as seen in an example in Figure 1(c), SSE did not monotonically 
decrease. We also observed variation in SSE due to random samplings of the true signal 
across the Monte-Carlo repeats. This variation in SSE across Monte-Carlo repeats 
decreased as more sample data were included in the regression. 

We identified the point of diminishing returns (as the number of samples included) 
when the 90th percentile of SSE crossed 105% of its minimum. The results of the point 
of diminishing returns for various combinations of the true signal’s SNR and τ are shown 
in Figure 3(a). We performed ANOVA on the point of diminishing returns results and 
found that there were significant non-zero slopes along SNR (p = 6.3e-48) and along τ  
(p = 0). Furthermore, we found an exponential trend along SNR through visual 
inspection. Using equation (4), we fitted the results to a surface (R2 = 81.46%) as shown 
in Figures 3(a) and 3(b). The coefficient values were x1 = 18.230 ± 4.050 (mean ± 95% 
confidence interval), x2 = 2.936 ± 0.083, x3 = –6.483 ± 1.234, x4 = 660.200 ± 98.100,  
x5 = –2.115 ± 0.221. The samples required at the point of diminishing returns increased 
linearly with τ and decreased exponentially with SNR. We also calculated the ratio of the 
samples required to time constant [Figures 3(c) and 3(d)]. This ratio remained reasonably 
constant (about 3.12–4) when the time constant and SNR were greater than 20 trials and 
2, respectively. 

Accuracy of the regression using the 90th percentile of SSE at the point of 
diminishing returns is shown in Figure 4(a). We Performed ANOVA on the accuracy 
results and found that there were significant non-zero slopes along SNR (p = 2.8e-10) and 
along τ (p = 6.5e-4). Using equation (5), we fitted the accuracy results to a surface  
(R2 = 3.15%) as shown in Figure 4. The coefficient values were y1 = 5.100 ± 0.065,  
y2 = –0.037 ± 0.011, y3 = –0.002 ± 0.001. The 90th percentile of SSE at the point of 
diminishing returns decreased (increase in accuracy) linearly with time constant and SNR. 
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Figure 3 The point of diminishing returns for the number of samples required from the transient 
responses to accurately perform exponential regression (see online version for colours) 

 

 

Notes: (a) We fitted the results (blue circles) to a surface (R2 = 81.46%) using  
equation (4). The samples required at the point of diminishing returns increased 
linearly with time constant, τ, and decreased exponentially with SNR. 
(b) Contours of the surface fit. 
(c–d) We also calculated the ratio of the samples required to the time constant. 
This ratio remained reasonably constant (about 3.12–4) when the time constant 
and SNR were greater than 20 trials and 2, respectively. 

We evaluated dataset from a past study (Patton et al., 2013) to determine minimal trial 
data to best estimate learning curves of a motor skill using the above results about the 
optimal number of required samples (trials). This analysis indicated that about the first 
195 (median with IQR 147 to 235 across subjects) out of 406 total trials would have 
sufficed to fit the learning curves (Figures 5 and A1). The optimal number of trials 

*( ),optN  however, varied greatly across subjects and needed to be determined for each 
subject as per methods described in Figure 2. The stopping criteria for two subjects were 
not met within 406 trials, indicating that more trials should have been collected for these 
individuals. Thus, these two subjects were excluded from the following percent error 
analysis. At the stopping criteria *( ),optN  the percent error in the model parameter A 
estimation was 3.33% (median with IQR –0.25 to 6.68 across subjects), in the model 



   

 

   

   
 

   

   

 

   

    Optimal design of motor learning experiments 297    
 

    
 
 

   

   
 

   

   

 

   

       
 

parameter τ estimation was –9.45% (–55.66 to 12.09), and in the model parameter B 
estimation was 6.46% (–8.87 to 20.31) [Figure 5(f)]. We did not find any significant 
difference for the percent error when compared against zero for each model parameter 
(sign test, p > 0.05). Furthermore, magnitude of the percent error was negatively 
correlated with SNR [Spearman correlation coefficient = –0.56 (p = 0.04) for parameter 
A, –0.43 (p = 0.12) for parameter τ, –0.13 (p = 0.65) for parameter B]. Overall, regression 
using trial observations less than *

optN  always yielded worse model fitting accuracy 
[Figure 5(e)]. 

Figure 4 Accuracy of the regression at the point of diminishing returns, (a) we fitted the accuracy 
results (blue circles) to a surface (R2 = 3.15%) using equation (5) (b) contours of the 
surface fit (see online version for colours) 

 

Notes: The accuracy was measured using the 90th percentile of error difference (SSE) 
between the true transient signal and the regression fit. The accuracy increased 
(decrease in SSE) linearly with both τ and SNR. 

4 Discussion 

Our goal was to identify the point of diminishing returns for the number of samples 
needed to identify the parameter values associated with a first-order transient response. 
By progressively allowing an additional sample into the regression, we tracked 
improvements in the accuracy of the regression curve to match the original synthesised 
signal. Our results reveal a systematic relationship between the number of samples 
required and the underlying time constant and noise in the data. We found that the 
number of samples required increased linearly with time constant and decreased 
exponentially with SNR (Figure 3). Furthermore, when the time constant and SNR were 
greater than 20 trials and 2, respectively, the number of samples required was 
consistently about 4 times the time constant. The accuracy of these regressions (at the 
point of minimum samples required) improved linearly with SNR and time constant 
(Figure 4). We also evaluated these results by using dataset from a past study (Patton  
et al., 2013) and determining the optimal number of required samples (trials) to best 
estimate learning curves of a motor skill (Figure 5). 
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Figure 5 Evaluation of dataset from a past study (Patton et al., 2013) to determine the minimal 
number of required samples (trials) to best estimate learning curves of a motor skill  
(see online version for colours) 

 

Notes: (a) An example of learning curve for a representative subject who practiced 
reaching with visuomotor rotation. Circles represent movement error during 
training phase at intermittent catch trials. The blue curve represents exponential 
regression using data from all trials (R2 = 41.07%, calculated over all 406 trials), 
while the green curve represents exponential regression using data from the 
determined minimal number of trials ( *

optN  = 235 trials, green shaded regions, red 
circles; R2 = 38.94%, calculated over all 406 trials). 
(b–c) Time constant and SNR estimates for each incrementally added trial to the 
exponential regression (black curve). Blue line represents the best possible values 
from exponential regression using data from all trials. 
(d) Number of trials required and its 95% prediction interval using equation (4) 
(black curve and grey shaded region). *

optN  was determined when upper limit of 
the prediction interval was less than the current trial number (1:1 line crossing). 
Figures 5(a)–5(d) analysis for the same representative subject. Green stars 
represent the values at * .optN  
(e) Accuracy with respect to the observed data [e.g., residual error, RMSE 
between green curve and circles in Figure 5(a)]. Each curve represents a different 
subject, and each curve has been shifted to show trials relative to * .optN  Note that  
Figures 5(b)–5(e) are plotted with logarithmic scales. 
(f) Percent error using difference between the estimated model parameter values at 
the stopping criteria *( )optN  and the best possible model parameter values from the 
regression on all 406 trial observations. Each circle represents a subject. Red bars 
and black lines represent interquartile range and median values of the percent 
error, respectively. The shaded grey regions represent kernel density estimates of 
the percent error. We did not find any significant difference for the percent error 
when compared against zero for each model parameter (sign test, p > 0.05). 
Overall, this analysis indicated that about the first 195 trials (median with IQR 
147 to 235 across subjects) would have sufficed to fit the learning curves, and 
additional trial data did not improve fit accuracy as seen in Figure 5(e). 
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The accuracy of the parameter estimation is fundamentally limited by the Fisher 
information, i.e., the amount of observable information from the sampled data (Dette and 
Neugebauer, 1997; Efron and Hinkley, 1978; Ljung, 2017) (see Appendix for Fisher 
information analysis). While higher accuracy was expected with higher SNR, it was 
interesting that the accuracy linearly improved with time constant (Figure 4). This is 
because of the number of samples (information) available in the earlier, rapidly decaying 
epochs. After three time constants, an exponential decays to 5% of its initial value, and 
therefore signal carries poor information about system behaviour. Our results also show 
that for larger SNR (greater than 2) the required number of sample observations should be 
about four times the time constant, while the required number of samples for lower SNR 
dramatically increases (Figure 3). In cases when signals have low SNR, weighted or 
robust regression and outlier rejections (e.g., Cook’s distance) can improve the model 
fitting. Furthermore, bootstrapping (Jackknife method) can provide better parameter 
estimates. In any case, data collection less than *

optN  can be detrimental to model fitting, 
while data collection beyond *

optN  can safeguard against bad model fitting. 
Some applications may require a higher accuracy for the parameter estimation at the 

stopping criteria for collecting further data samples. While the above results for Nopt were 
calculated from the incremental model fitting and identifying the point of diminishing 
returns (as the number of samples included) when the error across Monte-Carlo 
Simulations reached within 5% of its minimum value (i.e., when the 90th percentile of 
SSE crossed 105% of its minimum), we repeated the calculation for Nopt with the error 
reaching within 1% of its minimum value. Using equation (4), we fitted these results to a 
surface (R2 = 74.36%), and the coefficient values were x1 = 35.47 ± 5.84, x2 = 3.291 ± 
0.117, x3 = –7.302 ± 1.398, x4 = 682 ± 103.1, x5 = –1.826 ± 0.217. Using equation (5), we 
fitted results of the accuracy of the regression at the point of diminishing returns to a 
surface (R2 = 3.20%), and the coefficient values were y1 = 4.917 ± 0.062, y2 = –0.03514 ± 
0.01101, y3 = –0.00207 ± 0.0011. These set of coefficient values can be used to improve 
the accuracy at the stopping criteria ( * ,optN  Figure 2). 

The results presented in this paper are limited to exponential decay processes that are 
the output of first-order linear systems with additive Gaussian noise. However, more 
complex systems can be modelled as a combination of such systems, and in many 
situations, a system can be linearised about an operating point that captures local 
behaviour. It remains to be seen how much the sample size calculations are affected by 
signal-dependent noise. Another issue is the possibility of second-order effects that 
cannot be accounted for from this first-order approximation. Second-order models with 
imaginary poles can exhibit a rich set of oscillatory behaviour. However, with such 
behaviour, it may still be possible to extract its dominant first-order characteristics from 
the envelope of oscillations. Moreover, these methods applied to a very simple model 
with a very simple input – a step. Such approaches can be applied in the same fashion to 
more complicated systems. 

This sample size fitting problem is due to the discrete nature of data. Such problems 
often arise when the data acquisition must operate near the limits of the capability of their 
sampling rate, must monitor transient responses, and must minimise the cost associated 
with data sample collection. One example is in the study of motor adaptation or learning, 
where the ‘student’ makes discrete attempts that lead to a learning curve. Here collecting 
many trials is costly, and each successive trial offers less information. Our approach for 
determining the sample size is similar to statistical power analyses. While power is about 
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estimating the minimum necessary samples to robustly detect (without a type I error) a 
significant change, the present paper determines the minimum necessary samples to 
identify a model. Power analyses often will employ similar approaches using synthetic 
data and Monte-Carlo methods. 

5 Conclusions 

Some adaptive control applications require rapid identification of system parameters. For 
example, the so-called ‘human in the loop’ tuning of assistive controllers requires system 
identification at many different settings (Ding et al., 2018; Kim et al., 2017; Suzuki and 
Furuta, 2012). Thus, knowing a lower limit on the number of observation samples can 
suggest a stopping criterion for data acquisition. The outcomes of the current study can 
also potentially improve the design of rehabilitation protocols by determining the optimal 
length of training sessions for patients. Our results provide scientists and engineers with 
valuable knowledge and improve the efficiency of system identification and data-driven 
approaches. 

In any case, our Monte-Carlo method provides a clear set of requirements for the 
minimum dataset needed to best characterise a transient response (impulse or step) to a 
first-order linear time-invariant system. This should provide empirical sample size 
estimates in the application areas such as radioactive decay, heat transfer phenomena, 
structural and mechanical analysis, fluid dynamics, population dynamics, 
pharmacokinetics, metabolite production kinetics, drug dose-response or washout 
analysis, toxicology, learning, and neural adaptation. 
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Appendix 

Fisher information analysis 

Nonlinear model fitting using a signal that drops off exponentially and its consequent loss 
of valuable information from additional observation data can be studied via Fisher 
information. If we observe data Y1, …, Yn at times t1, …, tn, then the likelihood for the 
model [equation (3)] is 

2

1

1 1( ) exp exp
22

n
i

i
i

tL θ Y SNR
τπ=

      = − − ∗ −          
∏  (6) 

where θ = (SNR, τ)T. Then the log-likelihood is 
2

1

1( ) exp
2

n
i

i
i

tθ c Y SNR
τ=

  = − − ∗ −      (7) 

for a constant c not involving θ. The variance of the maximum likelihood estimate θ̂  is 
well described by the Fisher information. The Fisher information is 

12

T
I

θ θ

−∂ = −  ∂ ∂ 
  (8) 

and to a good approximation var(θ) ≈ I–1. So, large I means good identification and 
conversely. 

The partial derivatives of this log-likelihood are 

1

exp exp
n

i i
i

i

t tY SNR
SNR τ τ=

∂     = − ∗ − −    ∂       (9) 
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∂     = − ∗ − ∗ −    ∂       (10) 
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The expected value of minus the Hessian is then 
3
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3
1 2 2
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2 2exp exp

2 2 2exp exp

i i
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i ii
i i

t SNR tt
τ τ τ

SNR t tt t SNR
τ τ τ τ

=

    − − −        
    − − ∗ −        

  (14) 

which is going to be small when ti/τ are mostly large. As a simple case, suppose we 
already knew τ. Then likelihood would only involve SNR and the Fisher information 
would be  

1

2exp
n

i

i

t
τ=

 − 
   (15) 

so the variance of SNR  would then be about  
1

1

2exp
n

i

i

t
τ

−

=

  −     
  (16) 

and of course, not knowing τ would only make things worse. Furthermore, knowing a 
minimum number of samples required (n) can inform the optimal design of experiments 
and provide best-case stopping criteria for a variety of applications when one needs to 
know how much data might be needed. 
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Figure A1 Learning curves from a past motor learning study (Patton et al., 2013) for human 
subjects who practiced reaching with a visuomotor rotation (see online version  
for colours) 

 

Notes: Here, we evaluated this dataset to determine the minimal number of required 
samples ( *

optN  trials as per method summarised in Figure 2) to best estimate the 
learning curves. Circles represent movement error during training phase at 
intermittent catch trials. The blue curve represents exponential regression using 
data from all trials. The green curve represents exponential regression using data 
from the determined minimal number of trials (green shaded regions, red circles). 
The stopping criteria for determining *

optN  trials for the subject 7 and subject 10 
was not met within the total 406 available trials, indicating that more trials should 
have been collected for these individuals. Therefore, only the exponential 
regression using data from all trials are shown with blue curves and blue shaded 
regions for the subject 7 and subject 10. EA {gain, offset} represents the error-
augmenting feedback condition that was used to test its effect on the rate and 
extent of learning (see Patton et al., 2013). 


