Nanotechnology efficacy on improvement of acute velocity in fluid-conveyed pipes under thermal load
by Mohammad Hosein Fakhar; Ahmad Fakhar; Hamidreza Tabatabaei
International Journal of Hydromechatronics (IJHM), Vol. 4, No. 2, 2021

Abstract: Herein, nanotechnology efficacy on the acute velocity of fluid of fluid-conveyed-nanocomposite pipes is studied. The polymeric pipe is armed by carbon nanotubes utilising Mori and Tanaka model. The dynamic force induced by fluid is calculated utilising perturbation method. Based on method of energy and Lagrange model as well as Mindlin theory, the final equations are obtained. Utilising semi-exact solution, the relations are solved in order to calculate the acute velocity of fluid so that the efficacy of pipes geometrical constants and CNT percentage are investigated on the acute velocity of fluid. The outcomes are compared with other papers for showing the accuracy of this solution. With adding the CNT percentage, the acute velocity of fluid is improved. Indeed, the heat generation has a harmful efficacy on the acute velocity of fluid since it can reduce the acute value due to reduction in the stiffness of pipe.

Online publication date: Mon, 09-Aug-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com