Effect of ground on the shape optimisation of a symmetric aerofoil at low angles of attack
by Dennis Joseph; Ajith Kumar Arumugham-Achari; Jithin P. Narayanan
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 21, No. 4, 2021

Abstract: Numerical investigation on the aerodynamic characteristics of an optimised NACA0012 aerofoil in-ground effect (IGE) has been performed. Gradient-based shape optimisation was carried out using the ANSYS® 19.0 Adjoint Solver to augment lift over drag ratio (L/D) by at least 10%, at various heights and angles of attack. SST k-ω turbulence model was chosen for the simulations, after its validation for out-of-ground effect (OGE) and performing wind tunnel tests for IGE. While the desired target of 10% increase in the performance parameter was easily achieved through optimisation at low angles of attack (α < 6°), the frozen turbulence assumption in Adjoint Solver limited large shape alterations at higher angles of attack. Upper surface of the aerofoil had larger changes from original camber when compared to the lower surface. Also, the optimised profiles had significant modifications towards x/c ≥ 0.8. This signifies the suitability of trailing edge morphing for such applications.

Online publication date: Tue, 27-Jul-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com