Improved logic performance with semiconducting graphene nano mesh double gate field effect transistor
by Penchalaiah Palla; Hasan Raza Ansari; Gargi Raina; Weiping Wu
International Journal of Nanotechnology (IJNT), Vol. 18, No. 5/6/7/8, 2021

Abstract: Realisation of field-effect transistors in graphene with an energy gap remains one of the major difficulties for graphene based electronics. One of the solutions to engineer bandgap in graphene is to convert graphene into a graphene nanomesh (GNM).We simulated double gate field-effect transistor with GNM as a channel material underneath an alumina passivation top gate stack, which directly contacts the GNM channel without an inserted buffer layer. With the presence of energy bandgaps, the electronic and transport properties of DG-GNMFET are notably improved, as demonstrated by reduced off-state leakage current, enhanced saturation current, and subthreshold slope. The GNM electrical parameters were extracted by using semi-empirical methods using atomistic tools and the device electrical performance was analysed using the drift-diffusion mode space model. With further advances in bandgap engineering, the GNM based devices may find applications in digital circuits.

Online publication date: Mon, 12-Jul-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com