
Int. J. Embedded Systems, Vol. 14, No. 3, 2021 259

Copyright © 2021 Inderscience Enterprises Ltd.

Modular transformation of embedded systems from
firm-cores to soft-cores

Ehsan Ali and Wanchalerm Pora*
Department of Electrical Engineering,
Chulalongkorn University, Thailand
Email: ehssan.aali@gmail.com
Email: wanchalerm.p@chula.ac.th
*Corresponding author

Abstract: Although there are many 8-bit IP processor cores available, only a few, such as Xilinx
PicoBlaze and Lattice Mico8 firm-cores are reliable enough to be used in commercial products.
One of the drawbacks is that their codes are confined to vendor-specific primitives. It is
inefficient to implement a PicoBlaze processor on non-Xilinx FPGA devices. In this paper we
propose a systematic approach that transforms primitive-level designs (firm-cores) to vendor
independent designs (soft-cores), while modularising them during the process. This makes
modification and implementation of designs on any FPGA devices possible. To demonstrate the
idea, our soft-core version of PicoBlaze is implemented on a Lattice iCE40LP1k FPGA device
and is shown to be fully compatible with the original PicoBlaze macro. Rigorous verification
mechanisms have been employed to ensure the validity of the porting process; therefore, the
quality of transformation matches the industry expectation.

Keywords: embedded systems; FPGA; microprocessors; soft-core; firm-core; transformation;
HDL; Xilinx PicoBlaze; Lattice; verification.

Reference to this paper should be made as follows: Ali, E. and Pora, W. (2021)
‘Modular transformation of embedded systems from firm-cores to soft-cores’, Int. J. Embedded
Systems, Vol. 14, No. 3, pp.259–276.

Biographical notes: Ehsan Ali received his BEng degree in Computer Systems from
Assumption University of Thailand in 2015. He is currently a PhD candidate in Electrical
Engineering Department of Chulalongkorn University of Thailand. His research interests include
data centres, digital circuits, microprocessor design, compiler design, and FPGA-based
reconfigurable computing.

Wanchalerm Pora received his BEng and MEng degrees in Electrical Engineering from
Chulalongkorn University in 1992 and 1995 respectively. He received his PhD degree from
Imperial College, London in 2000. He has been with the Faculty of Engineering, Chulalongkorn
University since 1994, and is an Associate Professor at the Department of Electrical Engineering.
His research interests are in reconfigurable circuits, intelligent devices and systems for smart grid
and healthcare.

1 Introduction

Although there are many 8-bit IP processor cores available,
their integrity and reliability can be questioned. Only a few
commercial firm-cores such as Xilinx PicoBlaze and Lattice
Mico8 are being used by the FPGA community. One of the
limitations of these cores is that their HDL source code is
locked to vendor-specific primitives. In this paper we
propose a systematic approach which transforms
primitive-level designs (firm-cores) to vendor independent
designs (soft-cores). By modularisation we make design
modifications easier and allow the design to be
implemented on any FPGA devices. A case study soft-core
is implemented on a Lattice iCE40LP1k FPGA device and
is shown to be fully compatible with the PicoBlaze macro.
Rigorous verification mechanisms have been employed to

ensure the validity of the porting process; hence, the quality
of transformation matches the industry expectation.

IP cores offered by commercial companies are either
closed source or technology dependant (Romero-Troncoso
2006). For example, the source code of PicoBlaze is not in
behavioural-level, but in highly optimised Xilinx
primitive-level (firm-core). This restricts it to only Xilinx
development tools and devices and makes modification of
the design impractical.

Moreover, no method suggesting transformation of
firm-cores to soft-cores with modularisation concept exists.
This situation motivates us to propose a systematic
approach that transforms firm-cores to soft-core while
retaining the optimisation level and reliability as the main
contribution. Our proposed method allows designers to
convert protected non-HDL IP cores to a modular HDL

260 E. Ali and W. Pora

version. The modularity feature enables them to gain deep
knowledge of internal structure of the core. Furthermore,
major modification, or applying minor changes to the design
become feasible. Additionally, the transformed modular
soft-core has the advantage of not being locked to a specific
FPGA platform or technology, as it uses standard HDL
constructs which allows the soft-core product to be
synthesised and implemented on all FPGA vendors that
support standard HDL constructs. All IP cores that do not
implement anti reverse engineering techniques such as
physically unclonable functions (PUFs) (Barbareschi and
Bagnasco, 2017) can take advantage of our proposed
method.

The second minor contribution of this paper is the case
study of the proposed method which converts the Xilinx
PicoBlaze as a firm-core to Zipi8 which is a soft-core and
verifies and implements it on a Lattice device. Required
development tools to support the Lattice platform is also
provided which can be reused in order to implement Zipi8
on other platforms with no or minimum modifications.

This paper is divided into six sections. First section is
the introduction which provides the scope and motivation of
the work. Second section mentions background, related
work, and 8-bit IP cores review. Some applications of
Xilinx PicoBlaze and its architecture are also presented. It
then analyses the PicoBlaze source code and provides steps
to convert vendor-specific primitives to technology
independent VHDL code. Third section explains the
modular transformation procedure which is the main
contribution of this paper. It provides a modular
architectural analysis of PicoBlaze so designers can use it to
modify and customise the processor according to project
requirements. In Section 4, a verification method is
discussed which ensures that the Zipi8 operates exactly the
same as the original PicoBlaze. In Section 5, the Zipi8
soft-core is synthesised on a tiny Lattice FPGA device.
Meanwhile the necessary memory modification needed to
port to Lattice devices is provided. Section 6 concludes the
work by comparing the resource utilisation, and advantages
of Zipi8 soft-core with related cores.

2 Background

Surprisingly, the 8-bit processors continue to drive the
semiconductor industry alongside with their newer
16/32/64/128-bit counterparts since the introduction of Intel
8008 (Morse et al., 1980) until now. For embedded systems,
tiny 8-bit processors are the most popular choice. The
implementation of an 8-bit processor-based design can be
done via two mediums:

1 microcontroller unit (MCU)

2 field-programmable gate array (FPGA).

An MCU is composed of a processor with a limited amount
of random access memory (RAM), ROM, timers, I/O Ports,
communication ports, etc. All parts are inside a single chip
(Mazidi et al., 2016).

In cases that 32-bit accurate computation is not
necessary, migration to 8-bit solutions can improve
performance and save resources. Nie et al. (2020) show how
replacing a 32-bit floating-point multiplication by an 8-bit
fixed-point multiplication can save up to 87% of resources,
sacrificing only 1% accuracy loss.

An FPGA chip includes input/output, programmable
logic (PL) fabric blocks, and routing resources (Chen et al.,
2006). FPGAs are being used extensively to cover a broad
range of digital applications from simple glue logic circuits
(Fawcett, 1996), hardware accelerators (Possa et al., 2011),
to very powerful system-on-chip (SoC) platforms
(Rodríguez-Andina et al., 2015).

FPGAs have higher level of flexibility than MCUs by
providing a PL fabric. This for example, allows designers to
improve a product after release by upgrading both its
hardware and firmware (Makowski, 2013). If flexibility in
design has highest priority and consequently FPGA
approach is chosen, then the next design decision is about
the type of processor. FPGA-based embedded processor
types are categorised into three groups (Cofer and Harding,
2013):

 soft-cores are written in HDL language without
extensive optimisation for a target FPGA architecture

 firm-cores are also written in HDL language, but have
been optimised for a target FPGA architecture

 hard-cores are fixed-function gate-level intellectual
properties (IPs) within an FPGA fabric.

Hard-cores implemented in SoC chips run faster and
consume less power than soft-cores, but their rigid
implementation prevents them from being changed for
accommodating custom designs. In contrast soft-cores can
be adapted easily, and have much higher level of
portability (Cofer and Harding, 2013). In many embedded
applications, high performance is not of prime concern
but required functionality is. A soft-core processor
allows designers to add or omit peripherals from the
system-on-programmable-chip (SoPC) with ease. A
soft-core processor also offers flexibility of configuring the
core itself for an application (Nade and Sarwadnya, 2013).
At CERN institution, Ammendola et al. (2017) evaluate the
performance of a soft processor versus pure VHDL code.
They show that the usage of embedded processors could
surely lead advantages in the readability of the code, and
consequently, contribute to reliability as well as the
maintainability of the whole system.

One of the important applications of soft-core
processors is in safety-critical real-time embedded systems
where designers can take advantage of deterministic timing
of soft macros (Romeo et al., 2018). For instance, each
instruction of PicoBlaze takes exactly two clock cycles
(Chapman, 2014), which ensures deterministic response
time to external events and interrupts. Meanwhile, if a
project calls for both a microcontroller and FPGA, a
soft-core processor can decrease the overall printed circuit
board (PCB) footprint, speed up development time, and

 Modular transformation of embedded systems from firm-cores to soft-cores 261

permit more flexible redesigns by implementing both on a
single chip (Romeo et al., 2018). We also can mention
multi-core custom soft processors which can be used in
CPU-intensive DSP applications such as image processing
tasks (Amiri et al., 2017), or to simply boost parallel
applications by using multi-softcore architecture (Baklouti
and Abid, 2014).

2.1 Related work

The 8-bit microcontrollers are used in various applications
from implementing simple RGB LEDs (Yang, 2010),
control applications (Hsu et al., 2009), battery-powered data
acquisition (Mukaro and Carelse, 1999), maximum power
point tracking (MPPT) (Khan and Hossain, 2010), up to
efficient cryptography (Eberle et al., 2005), and
implementing TCP/IP stack (Dunkels, 2003).

An SoC platform, or platform FPGA (Anvar et al.,
2006) is a single chip which accommodates a PL fabric next
to fixed-function components such as sophisticated clocking
circuitry, phase-locked loops, analogue-to-digital and
digital-to-analogue converters (Zanikopoulos et al., 2005),
hard-core processors, high-speed hardened peripherals
(Ahmad et al., 2016), memory controllers, etc.

Dynamic reconfiguration is a special feature of FPGA
devices. For example, different interpolation algorithms for
a computer numerical control (CNC) system can be
dynamically programmed into FPGA device to lower cost
and achieve more functionality (Ni et al., 2017).

There is growing body of research showing that if the
critical kernels within a software application is identified
and reimplemented on FPGA hardware next to a soft
processor, it can compete and even out-perform a hard-core
processor (Lysecky and Vahid, 2005). This is achievable by
mapping algorithms to FPGA hardware to leverage the
inherent parallelism of FPGA devices in an optimal way
(Teubner and Woods, 2013). In the near future, many
mobile devices will be implemented/delivered on
FPGA-based reconfigurable chips (Perera and Li, 2019),
which can take advantage of the soft-cores.

FPGAs can exhibit better performance in parallel
computing applications such as matrix operations which
demand numerous processing elements (PEs) (Wang and
Ziavras, 2015). They also can be used as hardware
accelerators to speed up the execution (Sharat et al., 2017).

Works related specifically to the PicoBlaze cloning are
as follow: Merchant et al. (2006) provide a platform
independent implementation of older version of PicoBlaze
(KCPSM3) by replacing lookup-tables (LUTs), multiplexers
(MUXs), and RAMs, with behavioural HDL models, and
then implement it on an Altera device. Their transformed
core uses 236 LUTs while the original design uses just 99,
which is a 138% increase. There is also no verification
mechanism that ensures the reliability of the new core.

The PauloBlaze soft-core written in VHDL exists on
github.com that is 100% compatible with instructions set
architecture (ISA) of latest version of PicoBlaze (KCPSM6)
(Genßler, 2019). This design uses 276 LUTs, and 91

flip-flops (FFs) on a Xilinx Vortex-6 device while the
original PicoBlaze uses 121 LUTs, and FFs. That is 128%
increase in LUTs and –20.9% decrease in FFs. Their
verification method is based on simulating a test program,
unfortunately this is not a sufficient verification mechanism.

The authors of this paper observed discrepancies
between the core and the PicoBlaze by conducting a more
thorough verification. A testbench which puts PicoBlaze
and PauloBlaze alongside of two block RAMs holding exact
copy of a test program was implemented. A test program
with several calls to routines of an IEEE 754 floating point
library (Ali and Pora, 2020) was executed. The clock
accuracy comparison was skipped, and only the final
calculation results were recorded and then compared. The
experiment yielded numerous discrepancies that denounce
the integrity of PauloBlaze.

The PacoBlaze (Kocik, 2007) is another behavioural
Verilog clone of KCPSM3 firm-core. There is no official
resource utilisation of PacoBlaze reported by either the
original author (Kocik, 2007) or third parties. Therefore, the
authors of this paper had to synthesise and implement the
design on a Spartan6 device using Xilinx ISE 14.7. The
report obtained from our synthesis yields a utilisation of 158
LUTs, 8 MUXs, 30 FFs. In conclusion, there is no reliable
soft-core version of latest PicoBlaze (KCPSM6) available.

2.2 Embedded system 8-bit IP cores review

In embedded systems the resources are scarce and that
prompts designers to use tiny 8-bit processors in their
designs. A thorough search was conducted to identify all
available 8-bit IP cores. The result is categorised into three
groups:

1 commercial product (Tong et al., 2006)

2 academic work

3 individual project.

Table 1 shows all notable 8-bit IP cores available as of
writing this article. We have omitted those academic works
that their HDL source code could not be found in public
domain. Additionally, individual projects which have no
proper documentation or were simply duplication of other
designs were also excluded.

The highest priority in deciding which core to use is the
reliability factor. Cores written by individuals or developed
in academia are less reliable than commercial products
which enjoy larger community, alongside a support team
that continuously fix reported bugs, and release updates.
Moreover, commercial cores are supported by more mature
development tools (simulator, compiler, debugger, etc.), and
provide more extensive documentation. For example, we
tested PauloBlaze (Genßler, 2019), which is a plain VHDL
implementation of PicoBlaze, and is hosted on GitHub
website. We observed that under specific circumstances the
processor produces wrong result. This prompts us to
exclude unreliable individual/academic projects.

262 E. Ali and W. Pora

Table 1 8-bit IP processor cores, sorted alphabetically

No. Name Author/company, year Instr. set Source code Instr. width CPI

1 Core8051* Microsemi (2019) Intel
MCS-51

Verilog
VHDL

1-3 B 1-11

2 DP80390* Digital Core Design (2019) Intel
MCS-51

Verilog
VHDL

1-3 B 2-3

3 DRPIC16* Digital Core Design (2019) PIC
16XXX

Verilog
VHDL

14-bit 1-2

4 G.P. 8-bit
RISC†

Zavala et al. (2015) G.P. 8-bit
RISC

Verilog
VHDL

16-bit 2-3

5 HCS08* Silvaco (2019) Freescale
MC9S08xx

Verilog 1-4 B 2-6

6 L8051XC1* CAST Inc. (2019) Intel
MCS-51

Verilog
VHDL

1-3 B 4/6/12

7 M8051EW
M8051W*

Silvaco (2019) Freescale
MC9S08xx

Verilog 1-4 B 2-6

8 MCL51* MicroCore Labs (2019) Intel
MCS-51

Encrypted
Verilog

1-3 B 1-4

9 MCL65* MicroCore Labs (2019) NMOS
6502

Encrypted
Verilog

1-3 B 2-7

10 Mico8* Lattice Semi (2017) Mico8 Verilog
RTL

18-bit 2

11 MiniMIPS† Cesar (2011) MIPS VHDL 16-bit 1

12 Natalius‡ Guzman (2012) Natalius Verilog 16-bit 3

13 Navré‡ Bourdeauducq (2013) Atmel
AVR

Verilog 16-bit 1.7

14 Open8
uRISC‡

Hays (2016) V8-uRISC VHDL 1-3 B 1-7

15 pAVR‡ Cuturela (2009) Atmel VHDL 16-bit 1.7

16 PicoBlaze* PicoBlaze AVR
PicoBlaze

Primitive level 18-bit 2

17 risc8‡ Coonan (2016) PIC16C5X Verilog 12-bit 2-4

18 ZA-SUA† Santa et al. (2018) ZA-SUA Verilog 17-bit 4

Notes: *Commercial product: the RTL (or behavioural level) source code is not freely available.
†Academic work: might provide more reliability, and design integrity.
‡Individual project: lacks rigorous testing with high probability of having hidden bugs.

The Xilinx company, the inventor of FPGA technology, has
the highest FPGA market share (Ahmed, 2018). This
naturally makes their community larger than others and
consequently their 8-bit IP core which is named PicoBlaze
to be more reliable. Other commercial products such as
Mico8, DP80390, HCS08, etc. are also viable options, but
this should be considered that sometimes when a smaller
company is acquired by a larger one their products might
get discontinued, and all support tools and documentation
become outdated or inaccessible. For example, the RISC
V8-uRISC core (VAutomation, 1998) got disappeared after
ARC International acquisition of VAutomation (ARC,
2002).

Fortunately there is an open-source implementation of it
named Open8 uRISC on public domain (Hays, 2016).

Many cores listed in Table 1 are based on Intel MCS-51
(Wharton, 1980) which is a complex instruction set
computer (CISC). Others are based on reduced instruction
set computer (RISC) architectures like PIC16 and MIPS. As

Jamil (1995) points out, several studies show that 25% of
the instructions belonging to an ISA make up 95% of the
total execution time. This observation justifies the
adaptation of RISC in 8-bit IP cores.

2.3 PicoBlaze applications

Antonio-Torres et al. (2009) used the PicoBlaze in
embedded systems for ‘monitoring applications’, Ivanov
(2015) has employed the processor to provide a controller
for traffic light, Zaykov (2007) has constructed a
multiprocessor parallel architecture based on message
passing paradigm using multiple PicoBlaze cores, Mandala
(2011) has studied the usage of the PicoBlaze in
‘multiprocessor systems’, and Mattson (2004) has
implemented a network interface using the PicoBlaze.

Claudiu et al. (2012) have implemented ‘smart sensor
using multiple cores’ of PicoBlaze. Borawake and Chilveri
(2014) have used PicoBlaze to implement a ‘wireless sensor

 Modular transformation of embedded systems from firm-cores to soft-cores 263

network’. PicoBlaze has been used as a ‘configuration
engine’ in a fault-tolerance technique by Pham et al. (2013).
Hassan and Benaissa (2009) have implemented a scalable
elliptic curve cryptography (ECC) on PicoBlaze. Good and
Benaissa (2006) have used PicoBlaze for ‘advanced
encryption standard’ (AES). This body of literature justifies
the usage of 8-bit soft-core processors such as PicoBlaze in
a broad range of applications.

2.4 PicoBlaze architecture

In this section the details of PicoBlaze architecture will be
provide. As shown in Figure 1, the 18-bit instruction fetched
from data bus of program memory (up to 4KB supported)
has two bit-fields as shown in Table 2. The 6-bit opcode
provides up to 64 instructions, which PicoBlaze utilises
55 of them. This makes room for 9 instructions to be added
in the future. The operands field can have just one or a
mixture of the following fields: ‘aaa, kk, pp, p, ss, x, y’ as
shown in Table 2.

Figure 1 KCPSM6 architecture and features

Source: Chapman (2014)

For example, the ‘JUMP aaa’ instruction is encoded to
‘22aaa’ hex value which 22 is the opcode and aaa is the
12-bit jump address, or ‘LOAD sX, sY’ is encoded to
‘00xy0’ which 00 is the opcode and 4-bit x is destination
register, and 4-bit y is source register. There is a scratch pad
memory (SPM) with maximum size of 256 bytes which can
be used as data memory.

Table 2 PicoBlaze instruction bit-fields

Opcode (6-bit) Operands (12-bit)

aaa 12-bit address 000 to FFF

kk 8-bit constant 00 to FF

pp 8-bit port ID 00 to FF

p 4-bit port ID 0 to F

ss 8-bit scratch pad location 00 to FF

x 4-bit register within bank s0 to sF

6-bit always

y 4-bit register within bank s0 to sF

Source: Chapman (2014)

The PicoBlaze has three flags: carry (C), zero (Z), and
interrupt enable (IE). There are 256 input and 256 output
ports, and a stack with the depth of 30. There is an interrupt
pin that forces the processor to execute code which resides
in the interrupt service routine (ISR) with a predefined
memory address location, and a sleep pin which freezes all
operations (Chapman, 2014).

3 PicoBlaze to Zipi8 transformation

3.1 PicoBlaze source-code analysis

The ‘very high speed integrated circuit (VHSIC), Hardware
Description Language (VHDL), and Verilog Hardware
Description Language (Verilog-HDL)’ (Smith, 1996) are
two industry standard Hardware Description Languages
(HDL) (IEEE 1076-2008, 2009; IEEE 1364-2005, 2006).
The PicoBlaze core is provided in both VHDL and Verilog
languages. We choose VHDL version to take advantage of
having a very strongly typed language model (Smith, 1996).

FPGA primitives are the basic building blocks of a
design. They perform dedicated functions, implement
standards for I/O pins in devices, and their names are
standard (AN 307, 2018). We propose three steps in order to
analyse a design completely:

1 Primitive analysis: To scan the code for all primitives
used in the design. The list of all primitives used in
PicoBlaze is as follow: ‘LUT6, LUT6_2, FD, FDR,
FDRE, XORCY, MUXCY, RAM32M, RAM256X1S’.

2 Primitive definitions: To study the FPGA manufacturer
library guide to retrieve the detailed functionality of
each primitive, and then write a VHDL implementation
of it accordingly. In our case, the ‘Xilinx 7 Series
FPGA Libraries Guide’ (Xilinx UG799, 2011) provides
the detailed behaviour of each primitive.

3 Modularisation: To draw the schematic of LUTs,
MUXs, and FFs, and combine combinational logics
(CLs) that is implemented using LUTs into independent
modules. All primitives between FFs which contribute
to FF excitation equation should be packed into a
module. The module name can be chosen based on
internal signal names. For example, a module that
produces carry and zero flag can be named as ‘flags’.

In next section, we will provide an equivalent
vendor-independent VHDL code for all primitives used in
the design.

3.2 Primitive conversion to technology independent
VHDL

In this section, all primitives used in PicoBlaze firm-core
are scanned and identified. Then an equivalent technology
independent VHDL version of them is proposed to replace
the primitives. By doing this, we have essentially
transformed the firm-core nature of the processor to
soft-core and converted the design into a more

264 E. Ali and W. Pora

self-explanatory state. This opens up the possibility for
designers to be able to modify the design and retarget it to
other platforms.

Table 3 provides the summary of the VHDL approaches
adapted in transformation process.

Table 3 Summary of the primitive conversion to technology
independent VHDL

Primitive Conversion method

1 LUT6 Espresso minimiser yields a continuous
assignment equation

2 LUt6_2 Espresso minimiser yields two continuous
assignment equations

3 FD VHDL process sensitive to rising edge of
clock

4 FDR VHDL process sensitive to rising edge of
clock and reset signal

5 FDRE VHDL process sensitive to rising edge of
clock, reset, and enable (CE) signals

6 XORCY Continuous assignment with equation:
Out <= A x or B

7 MUXCY VHDL process sensitive to 3-inputs
(2-inputs and 1 selector)

8 RAM32M One port VHDL array with synchronised
write, asynchronous read

9 RAM256X1S One port VHDL array with synchronised
write, asynchronous read

3.2.1 LUT6, and LUT6_2: 6-input lookup table

Both design elements are 6-input look-up table (LUT).
LUT6 has 1-output, and LUT6_2 has 2-outputs. They can
either act as asynchronous 64-bit ROM (with 6-bit
addressing) or implement any 6-input logic function. LUTs
are the basic logic building blocks and are used to
implement most logic functions of the design (Xilinx
UG799, 2011). The LUT6 primitive in PicoBlaze is
used only to implement combination logic (CL).
Listing 1 shows an example of PicoBlaze LUT6 instance.
The ‘pc_mode2_lut’ is instance name, and X
‘FFFFFFFF00040000’ is a 64-bit hexadecimal constant
used as initial value of LUT6 primitive. I0, I1, I2, I3, I4, and
I5 are inputs, and O is output.

Listing 1 An example of PicoBlaze LUT6 primitive instantiation

pc_mode2_lut: LUT6

 generic map (INIT => X”FFFFFFFF00040000”)

 port map (I0 => instruction(12)

 I1 => instruction(14)

 I2 => instruction(15)

 I3 => instruction(16)

 I4 => instruction(17)

 I5 => active_interrupt

 O => pc_mode(2))

We first perform Boolean minimisation on the 6-input logic
function using the given 64-bit LUT value. The
minimisation method can be either manual or automated
using algorithms such as Espresso logic minimiser (McGeer
et al., 1993). In above example, the minimised function is
shown in (1).

5 4. 3. 2. 1.10O I I I I I  (1)

After replacing the I0, I1, I2, I3, I4, I5, and O variables in
(1) with the name of signals connected to them, we get the
exact equivalent vendor independent VHDL implementation
of LUT6 which is shown in Listing 2.

Listing 2 An example of VHDL Implementation of LUT6
primitive

pc_mode(2) <= (active_interrupt or

 instruction(17) and

 (not instruction(16)) and

 (not instruction(15)) and

 instruction(14) and

 (not instruction(12))

The case for LUT6_2 is similar except that the lower 32-bit
LUT value is used for first, and the full 64-bit of the same
shared value is used for the second output. For example, if
X”7777027700000200” is the LUT6_2 value, then for O5
pin output, the value X”00000200” is used, and for O6 pin
output, the value X”7777027700000200” is used.

3.2.2 FD: D FF, and its variants: FDR, FDRE

This design element is a D-type FF. The data on input is
loaded into the FF during the Low-to-High clock transition
(Xilinx UG799, 2011). Listing 3 shows an example of
PicoBlaze FD instance. The ‘alu_mux_sel0_flop’ is the
instance name, D is input, Q is output, and C is clock.

Listing 3 An example of PicoBlaze FD primitive instantiation

alu_mux_sel0_flop: FD

 port map (D => alu_mux_sel_value(0)

 Q => alu_mux_sel(0)

 C => clk)

The vendor independent VHDL code for FD primitive is
shown in Listing 4.

Listing 4 General VHDL implementation of FD primitive

flipflops_process: process (C) begin

 if rising_edge(C) then

 Q <= D;

 end if;

end process flipflops_process;

 Modular transformation of embedded systems from firm-cores to soft-cores 265

Replacing C, Q, and D with the name of connected signals
will yield the final equivalent vendor independent VHDL
code for FD primitive as shown in Listing 5.

Listing 5 An example of VHDL implementation of FD primitive

flipflops_process: process (clk) begin

if rising_edge(clk) then

alu_mux_sel(0) <= alu_mux_sel_value(0);

end if;

end process flipflops_process;

The design elements FDR and FDRE are D-type FF with
synchronous reset, and clock enable, and synchronous reset
respectively. FDR has an extra R pin used for resetting the
FF, and FDRE in addition to a synchronous reset has a CE
pin used as clock enable signal. Listing 6 shows the vendor
independent VHDL implementation of these primitives.

Listing 6 General VHDL implementation of FDR and FDRE
primitives

−− FDR

flipflops_R_process: process (C) begin

 if rising_edge(C) then

 if (R = ‘1’) then

 Q <= ‘0’;

 else

 Q <= D;

 end if;

 end if;

end process flipflops_R_process;

−− FDRE

flipflops_R_CE_process: process (C) begin

 if rising_edge(C) then

 if (R = ‘1’) then

 Q <= ‘0’;

 elsif CE = ‘1’ then

 Q <= D;

 end if;

 end if;

end process flipflops_R_CE_process;

3.2.3 XORCY: XOR gate, and MUXCY: 2-to-1
multiplexer

The XORCY is a special XOR with general output that
generates faster and smaller arithmetic functions. It is a
dedicated XOR function within the carry-chain logic of
FPGA slice. It allows for fast and efficient creation of
arithmetic (add/subtract) or wide logic functions (large
AND/OR gate) (Xilinx UG799, 2011); the MUXCY is a
simple 2-to-1 Multiplexer (Xilinx UG799, 2011).

Listing 7 shows an example of PicoBlaze XORCY, and
MUCY instances. For XORCY, the ‘arith_carry_xorcy’ is
the instance name, LI, and CI are inputs, O is output. For
MUXCY, the ‘parity_muxcy’ is the instance name, DI, and
CI are inputs, S is selector, and O is multiplexer output. If S
is low then DI drives the O, and if S is high then CI drives
the O output.

Listing 7 An example of PicoBlaze XORCY and MUXCY
primitives instantiation

arith_carry_xorcy: XORCY

 port map (LI => ‘0’,

 CI => carry_arith_logical(7),

 O => arith_carry_value);

parity_muxcy: MUXCY

 port map (DI => lower_parity,

 CI => ‘0’,

 S => lower_parity_sel,

 O => carry_lower_parity);

Listing 8 General VHDL implementation of XORCY primitive

−− XORCY

O <= LI xor CI;

−− MUXCY

muxcy_process: process (S, DI) begin

case S is

 when ‘0’ => O <= DI;

 when ‘1’ => O <= CI;

 when others => O <= ‘X’;

end case;

end process muxcy_process;

3.2.4 RAM32M, RAM256X1S: multi port random
access memories (select RAM)

These design elements are multi-port, RAM with
synchronous write and asynchronous independent read
capability. RAM32M is a 32-bit deep by 8-bit wide, and
RAM256X1S is a 256-bit deep by 1-bit wide (Xilinx
UG799, 2011).

Listing 9 shows an example of PicoBlaze RAM32M
instance. The ‘stack_ram_low’ is the instance name,
INIT_A, INIT_B, INIT_C, INIT_D define initial RAM
values, DIA, DIB, DIC, DID, are data input, DOA, DOB,
DOC, DOD, are data output, ADDRA, ADDRB, ADDRC,
ADDRD, are read address bus, WE is write enable, and
WCLK is write clock. All writes are synchronous, while all
reads are asynchronous. The RAM32M can have several
configurations. PicoBlaze uses this primitive as a 32x8
single port RAM by connecting ADDRX pins to the same
signal (stack_pointer).

266 E. Ali and W. Pora

Listing 9 An example of PicoBlaze RAM32M primitive
instantiation

stack_ram_low : RAM32M

 generic map (

 INIT_A => X”0000000000000000”,

 INIT_B => X”0000000000000000”,

 INIT_C => X”0000000000000000”,

 INIT_D => X”0000000000000000”)

 port map (

 DOA(0) => stack_carry_flag,

 DOA(1) => stack_zero_flag,

 DOB(0) => stack_bank,

 DOB(1) => stack_bit,

 DOC => stack_memory(1 downto 0),

 DOD => stack_memory(3 downto 2),

 ADDRA => stack_pointer(4 downto 0),

 ADDRB => stack_pointer(4 downto 0),

 ADDRC => stack_pointer(4 downto 0),

 ADDRD => stack_pointer(4 downto 0),

 DIA(0) => carry_flag,

 DIA(1) => zero_flag,

 DIB(0) => bank,

 DIB(1) => run,

 DIC => pc(1 downto 0),

 DID => pc(3 downto 2),

 WE => t_state(1),

 WCLK => clk);

The vendor independent VHDL code for RAM32M
primitive is shown in Listing 10. The general ‘ram’ VHDL
module is defined in ‘ram.vhd’ file. In order to have a 32x8
RAM the depth and width of memory is set through
generic parameters: ‘DATA_WIDTH’ is set to 8, and
‘ADDRESS_WIDTH’ is set to 5. Note that DIA, DIB, DIC,
DID, are all 2-bit signals which are combined into 8-bit DI
signal.

Similarly, DOA, DOB, DOC, DOD, are all 2-bit signals
which are combined into 8-bit DO. In PicoBlaze design,
ADDRA, ADDRB, ADDRC, ADDRD are all connected to
a shared bus (e.g., stack_pointer), therefore we combine all
of them into ADDR signal.

Similar approach can be taken in order to convert
RAM256X1S primitive except that ‘DATA_WIDTH’ is set
to 1, and ‘ADDRESS_WIDTH’ is set to 8.

Listing 10 An example of PicoBlaze RAM32M primitive
instantiation

−− General ram module defined in ram.vhd file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity ram is

generic (DATA_WIDTH : positive;

ADDRESS_WIDTH : positive);

port (WCLK : in std_logic;

WE : in std_logic;

DI : in std_logic_vector (DATA_WIDTH−1 downto 0);

ADDR : in std_logic_vector (ADDRESS_WIDTH−1
downto 0);

DO : out std_logic_vector (DATA_WIDTH−1 downto 0)
);

end ram;

architecture Behavioural of ram is

type ram_type is array ((2**ADDR’length) − 1 downto 0) of

std_logic_vector(DI’range);

signal ram_s : ram_type := others=> (others=>‘0’));

begin

−− Synchronous write, asynchronous read

RamProc: process(WCLK) begin

if rising_edge(WCLK) then

if WE = ‘1’ then

ram_s(to_integer(unsigned(ADDR))) <= DI;

end if;

end if;

end process RamProc;

−− Asynchronous read

DO <= ram_s(to_integer(unsigned(ADDR)));

end Behavioural;

−− RAM32M instantiation

stack_ram_low: ram

generic map (DATA_WIDTH => 8, −− 32 x 8-bit RAM

ADDRESS_WIDTH => 5)

port map (WCLK => clk,

WE => t_state(1),

DI => data_in_ram_low,

ADDR => stack_pointer,

DO => data_out_ram_low);

3.3 PicoBlaze conversion using modular approach

The PicoBlaze VHDL source code has no modular
structure. It is a single module in a single VHDL file with
long list of primitive instances, and signals that connect
them. To port the design from firm-core to soft-core it is
enough to directly replace all the instances with vendor
independent VHDL equivalent codes mentioned in previous
section as done by Merchant et al. (2006).

 Modular transformation of embedded systems from firm-cores to soft-cores 267

Table 4 List of PicoBlaze modules

No. Name No. Name

1 arith_and_logic_operations 9 sel_of_2nd_op_to_alu_and_port_id

2 decode4alu 10 sel_of_out_port_value

3 decode4_pc_statck 11 shift_and_rotate_operations

4 decode4_strobes_enables 12 spm_with_output_reg

5 flags 13 stack

6 mux_outputs_from_alu_spm_input_ports 14 state_machine

7 program_counter 15 two_banks_of_16_gp_reg

8 register_bank_control 16 x12_bit_program_address_generator

Figure 2 Modular PicoBlaze architecture (Zipi8) (see online version for colours)

By grouping the related primitives into isolated modules,
and then perform the transformation we can achieve two
goals:

1 to handle the complexity and minimise the human
errors

2 to reveal the internal architecture of design which
makes modification easier.

The available comments in source code, and primitive
instance, and signal names are used to divide the PicoBlaze
core into 16 modules. Each module resides in a separate
VHDL file with .vhd file extension, the filenames are
exactly the same as module names. All modules involved in
constructing the PicoBlaze core are listed in Table 4.

The modules, and important signals and buses which
connect them are shown in Figure 2. The schematic is the
simplified version of a complete and detailed one and is
provided in Appendix A. To simplify the diagram
occasionally two or three related modules combined as
submodules. This is indicated by mentioning module
numbers in parentheses inside rectangles. Both program
memory and the processor share the same global clock

signal. Those modules which are synchronous to the clock
are marked with triangular symbol. The absence of clock
symbol indicates a pure CL clock (e.g., ‘operand selection’).

3.4 Zipi8 architecture

The important paths such as ‘data path’ and ‘instruction
path’ are shown in Figure 2. The allocation of two separate
buses connected to two different memory blocks indicates a
Harvard Architecture (Furber, 1989). In order to explain the
execution cycle of PicoBlaze we go through the sample
program (Figure 3).

Listing 11 PicoBlaze sample program

Start at 000:
LOAD s0, 05 ; Load 05 into register s0

LOAD s1, 04 ; Load 04 into register s1

JUMP subprogram_at_01c

...

subprogram_at_01c:

ADD s1, s0; s1 <= s1 + s0

268 E. Ali and W. Pora

Figure 3 PicoBlaze instruction cycle

The de-assertion of reset signal puts the processor into run
state. In this state the processor waits for the first clock
transition from low to high to occur, which triggers a fetch
instruction from location 0x000 of program memory. The
fetch makes the ‘instruction path’ bus to hold valid data (In
our example, it is the first instruction: LOAD s0, 05).

The instruction bus is connected to FFs in ‘decoders’,
‘state machine and control’, ‘flags’, and ‘program counter’
modules. When the second clock cycle occurs the
instruction is decoded (sx_addr is set to 0 to select register
s0, and 05 constant value is held on instruction[7:0] marked
as kk field); next state of machine is calculated; flags are set,
and finally program counter (PC) is incremented by 1.

In clock cycle #3 the instruction at location 0x001 is
fetched, and at the same time the result of ALU is written
back into register, which results s0 to hold value 05. Next
clock fetches instruction at location 1 (LOAD s1, s0).
Similarly decode and execute happens in next clock cycle
which sets sx_addr to 1 and prompts second ALU operand
(kk) to hold constant value 04. Next clock cycle writes back
the result into register bank, which results s1 to hold value

04, and at the same time fetches the next instruction (JUMP
subprogram_at_01c).

Next clock cycle decodes the JUMP instruction and
instead of ‘PC + 1’, the PC is set to value 0x01C which is
the jump target location. Next clock cycle fetches the
instruction at location 0x01C of program memory (ADD s1,
s0), and then one cycle later, it decodes it and finally at next
clock cycle the ALU result of addition of 5 + 4 which is 9 is
written back into the register s1, and so on.

Each PicoBlaze instruction takes exactly two
clock cycles to execute which makes its performance
deterministic. This turns PicoBlaze into a suitable candidate
for safety-critical real-time embedded systems (Romeo
et al., 2018).

3.5 Zipi8 modules’ schematic

In this section, we discuss the correlation between the
simplified module in Figure 2 and its full version provided
in Appendix A. This helps readers to identify modules, their
input/output ports, and in-sheet connections easier.

Figure 4 demonstrates how primitives are grouped into
modules. The ‘decoders’ module is provided as an example.
The blue dashed line rectangle marks the ‘decoders’ module
which is a virtual one as it does not have a module number,
and therefore there is no corresponding VHDL file. It
merely groups three modules which their functionality is
related to one another (decoding) under one umbrella. Inside
‘decoders’ we can see three sub-modules: ‘(2) decoding
for ALU, (3) decoding for program counter and stack,
(4) decoding for Strobes and enables’.

Figure 4 PicoBlaze decoder modules with input/output ports, grouped primitives, and in-sheet connections (see online version
for colours)

 Modular transformation of embedded systems from firm-cores to soft-cores 269

These modules have a corresponding VHDL source file
with the exact same name. For example, under the Zipi8
project folder there is a VHDL file named ‘decode4alu.vhd’
which corresponds to ‘(2) Decoding for ALU’ module
depicted in Figure 4. The instruction signal bus is an input
port to PicoBlaze, and k_write_strobe is a PicoBlaze output
port (both PicoBlaze input/output ports marked with green
colour). The instruction[16:13], and carry_flag are inputs,
and alu_mux_sel[1:0], arith_logical_sel[2:0], and
arith_carry_in are outputs of the module ‘(2) Decoding for
ALU’. The squares rotated by 45-degrees indicate in-sheet
local connection.

3.5.1 Zipi8 performance and resource utilisation

Table 5 shows the resource utilisation of Zipi8 soft-core
versus others using Vivado v2018.3 (64-bit) synthesis tool
for an UltraScale+ architecture. It can be seen that after
original PicoBlaze firm-core (123 LUTs), the Zipi8 has the
lowest LUT count, it also uses 10 registers less, and
consumes no carry and MUX primitives.

Table 5 Core Utilisation Comparison on Xilinx ZYNQ
UltraScale+ Device (ZCU104 Board)

Module LUTs Registers Carry4/8
F7

Muxes
F8

Muxes

PicoBlaze
(KCPSM3)

163 74 10 0 0

PacoBlaze
(KCPSM3)*

157 31 0 0 8

PicoBlaze
(KCPSM6)

123 76 7 16 8

PauloBlaze
(KCPSM6)

315 80 12 0 0

Zipi8 (KCPSM6) 143 66 0 0 0

Notes: *Xilinx ISE WebPACK 14.7 was used,
synthesised for Spartan6 XC6SLX4 device

Particularly, the main usage of 8-bit soft-cores is in
implementing state machines or control applications and not
high-performance scientific calculations. Therefore, the
core performance (maximum clock frequency) has less
importance than resource utilisation (core compactness).
Therefore, stating the maximum achievable clock
frequencies in Table 5 is omitted. The maximum achievable
clock frequency for each core is device dependant. Every
FPGA has a specific speed grade that determines the
maximum clock frequency of designs. For example, the
original PicoBlaze achieves up to 105MHz in a Spartan-6
(–2 speed grade) and up to 238MHz can be achieved in a
Kintex-7 (–3 speed grade) device (Chapman, 2014).

In the case of Zipi8, the authors of this paper could
achieve a clock frequency of 333MHz on XCZU7EV chip

with speed grade –2. The 333MHz is the speed limit in the
FPGA ‘lower power domain clock’ which feeds the ‘PL
fabric clock’. Designers can use the mixed-mode clock
manager (MMCM) to generate clock frequency more than
333MHz and push the Zipi8 performance even further.

4 Zipi8 verification

4.1 Verification concepts

Verification is the process of determining that a model
implementation accurately represents the developer’s
conceptual description of the model and the solution to the
model (Thacker et al., 2004; AIAA, 2014). Verification can
be classified into:

a Code verification: To identify and eliminate
programming and implementation errors within the
software

b Calculation verification: To quantify the error of a
numerical simulation or in other words ‘numerical error
estimation’ (AIAA, 2014).

A widely used approach in code verification is the
comparison method in which one code is compared to
another established code (Knupp and Salari, 2002).

After firm-core to soft-core transformation, we can use
comparison method to verify the integrity of Zipi8 by
comparing the state of all Zip8 signal buses to PicoBlaze on
every clock cycle. Here we use the concept of comparison
method by taking advantage of this fact that the Xilinx
PicoBlaze is an establish design, and we can compare our
proposed design (Zipi8) against it. The first step in
comparison is to take the fully designed and implemented
Zipi8 soft-core and probe all its internal signals; in parallel,
as there is a one to one relationship between internal signals
of both cores, the associated signals in PicoBlaze are also
probed.

Next, we compare these two sets of signals (coming out
of both processor cores) against each other in every clock
cycle. As both cores execute the same test program
synchronously, their internal states and bus values change
accordingly, which gives us the opportunity to look for any
discrepancies. Next section gives details of this verification
mechanism.

4.2 Comparison method verification mechanism

Figure 5 shows the details of testbench that is used for
verification process. The VHDL simulation module
‘test_zipi8.vhd’ instantiates the ‘top’ module as unit under
test (UUT). The top module consists of two block RAM
modules, both holding an exact copy of a PicoBlaze
program.

270 E. Ali and W. Pora

Figure 5 Zipi8 integrity verification: VHDL simulation Testbench (see online version for colours)

The PicoBlaze program resides in those BRAMs is
automatically generated by a tool developed by the authors
of this paper. We have developed the tool using C++
language to generate random instructions based on a pool
(instruction pool class in Figure 6).

All classes used in our random program generator tool
are shown in Figure 6. The InstructionPool class instantiates
51 instructions and returns a random instruction whenever
its getRandomInst() method is called. The Instruction class
represents a PicoBlaze instruction and has opcode, and
operands fields as its data members. The generate_ops() is a
function member of Instruction class that calls the toss()
method of Operand class to generate random values for
each operand.

This allows generation of instructions randomly and
then assigns arbitrary values to their operand(s). The
instruction pool does not contain the jump and subroutine
instructions (CALL and RETURN variations) as they are
associated with labels and modify the PC value. The
random placement of these instructions will disrupt the
normal flow of the program.

For example, a randomly generated RETURN
instruction in the first location of program memory simply
causes a stack overflow; a random CALL instruction with a
randomly generated target address might set the PC register
to data section of the program and forces the processor to
execute data, instead of code which puts the processor into
unknown and unpredictable state. Therefore, instead of
automatic generation, a test program is written manually to
test those instructions.

As we mentioned in Section 3.3, the Zipi8 has 16
modules. We probe the output of all these 16 modules
(102 signals in total) and compare it against the
corresponding signals in KCPSM6 using VHDL assert
simulation command. The assert statements are
synchronised with clocks, and they check the validity of all
102 signals in every clock cycle. We use VHDL alias
command for assigning short names to internal signals
which run down into hierarchy of modules. Listing 12
shows a sample of VHDL code for probing one of those 102
signals. The Vivado project that contains the complete
VHDL simulation source code is provided as supplementary
material to this paper in Appendix B.

Listing 12 VHDL verification: signal assertion

test_internal_signals: process (uut_clk)

alias zipi8_run is

<< signal uut.processor_zipi8.state_machine_i.run : std_logic
>>;

alias kcpsm6_run is

<< signal uut.processor_kcpsm6.run : std_logic >>;

begin

if rising_edge(uut_clk) then

assert (zipi8_run = kcpsm6_run)

report “zipi8_run internal signal mismatch @ “ &

integer’image (now / 1ns) & “ ns” severity failure;

end if;

end process;

 Modular transformation of embedded systems from firm-cores to soft-cores 271

Figure 6 PicoBlaze random program generator classes

In conjunction with above method a second verification
mechanism is employed to verify the Zipi8 integrity. In this
method, a VHDL process is defined that prompts both
Zipi8, and KCPSM6 cores to dump the 18-bit hex value of
the instruction under execution into two separate files on
every clock cycle. We then use byte comparison to find out
the existence of any discrepancy in simulation dumped files.
The absence of any discrepancies, and assertion failure
affirms this conclusion: ‘Zipi8 is a PicoBlaze compatible
soft-core and it is as reliable as the original version’.

Listing 13 VHDL verification: instruction dump

instruction_seq_dump : process(uut_clk)

−− open file: “zipi8_instructions.txt” in write_mode;

file file_handler : text;

variable outline : line;

variable file_is_open: boolean := false;

begin

if not file_is_open then

file_open (file_handler, “zipi8_instructions.txt”,
write_mode);

file_is_open := true;

end if;

if rising_edge(uut_clk) then

if(zipi8_reset = ‘0’) then

hwrite(outline, “00” & zipi8_instruction);

writeline(file_handler, outline);

end if;

end if;

end process instruction_seq_dump;

Listing 13 shows the VHDL process in the second part of
the simulation code that dumps the instructions executed by
Zipi8 into ‘zipi8_instructions.txt’. The instructions executed
by KCPSM6 are obtained when we convert the test program

source code to .hex file in the assembling process
(PicoBlaze assembler automatically dumps a .hex file) For
example if the test program is saved in ABC.psm source file
then issuing the assembler with ABC.psm as input, will
output the ABC.hex file which contains all the KCPSM6
instructions. We can then change the extension ABC.hex to
ABC.txt, and then perform byte comparison against
zipi8_instructions.txt file to find potential discrepancies.

5 PicoBlaze on lattice

5.1 Synthesis utilisation result

This section provides proof of concept by synthesising
Zipi8 and implementing it on a Lattice FPGA device
(Lattice Semi, 2019). The Lattice iCEcube2 version
2017.08.27940 is used as project manager, and ‘Synplify
Pro L-2016.09L+ice40, Build 077R, Dec 2 2016’ is used as
synthesis tool. The complete source code and project files
are provided in Appendix C.

Table 6 shows the resource utilisation reported by
Synplify Pro for Lattice iCE40LP1K after synthesising and
mapping the Zipi8. The most important count is LUT4
consumption. Table 6 shows that for Zipi8, ‘distribution of
all consumed LUTs’ is 642 (SB_LUT4). Synthesis of
PicoBlaze using Vivado v2018.3 (64-bit) for a ZYNQ
UltraScale+ device utilises 143 LUTs.

Table 6 Zipi8 resource utilisation on Lattice iCE40LP1K

Cell usage Count

DFF variation 322

Logic cell 642 of 1280 uses (50%) (190 inferred
register)

SB_RAM2048x2 9 uses

SB_RAM256x16 2 uses

Block Rams: 11 of 16 (68%)

Figure 7 Lattice logic cell

Source: Lattice Semi (2017)

272 E. Ali and W. Pora

The reason for an increase in LUT count is that UltraScale+
devices provide LUTs with 5- and 6-inputs, while Lattice
iCE40 series devices equipped with only 4-input LUTs.
Additionally, the synthesis tool fails to map a memory block
to Lattice technology specific RAM primitive and maps it to
256 individual registers instead. A programmable logic
block (PLB) in Lattice device consist of an LUT4 and a
D flip-flop (DFF) as shown in Figure 7 (Lattice Semi,
2017). Therefore, 256 DFF automatically increases the
LUT4 count which must be considered. This consequently
makes the final LUT count for Zipi8 on the Lattice to be
642 − 256 = 382.

5.2 Lattice RAM blocks

The PicoBlaze macro uses RAM elements in order to
implement SPM, stack, and internal registers. These
modules (plus the program memory) with their depth and
width are listed in Table 7. It is up to synthesis tool, and its
user settings to infer memory clock elements, therefore, we
refrain from converting general parametrised RAM blocks
to Lattice RAM blocks.

Table 7 Zipi8 modules with parametrised memory block

Zipi8 module Depth Width

two_banks_of_16_gp_reg 32 8

spm_with_output_reg 256 8

stack 32 16

program_memory 4096 18

5.2.1 Program memory

A 4KB block RAM with width of 18-bit must be connected
to PicoBlaze as ‘program memory’. Xilinx devices provide
9-bit RAM blocks which makes it very efficient to construct
program memory by simply grouping 2 block RAMs next to
each other (2 × 9bit = 18bit). Lattice devices do not provide
9-bit wide block RAMs, therefore forcing designers to
construct an 18-bit wide block RAM using other
combinations. Lattice iCE40LP1K has 16 Memory Block of
type RAM4k. Each 4k memory block can be used in a
variety of depths and widths such as: ‘256x16 (4K)’, ‘512x8
(4K)’, ‘1024x4 (4K)’, ‘2048x2 (4K)’ (Lattice Semi, 2017).

Instead of standard 4KB program memory, we construct
a 2KB program memory by grouping 9 instances of
SB_RAM2048x2 primitive (9 × 2bit = 18bit), and leave the
rest of memory blocks used in Zipi8 (such as memory
blocks used as register banks, stack, and SPM) to synthesis
tool to infer (they will be inferred into either FF primitives
or block RAMS).

Due to this change in program memory structure the
original Xilinx assembler fails to generate the correct
VHDL template for program memory. Therefore, a new tool
is developed in C++ language which receives PicoBlaze
program in .hex format, and outputs a .vhd file as PicoBlaze
program memory template which can be directly imported
into the project without any modification.

The tool takes advantage of INIT_0 (to INIT_F)
directives to set initial values of Lattice RAM RAM4K
primitives to initialise the memory blocks. These initial
values are read from .hex file and inserted into 9 separate
instances of SB_RAM2048x2 in a .vhd file. The complete
C++ source code of this tool is provided in Appendix D.
Researchers, and designers can be inspired by looking into
the approach used in our tool to facilitate development of
their own tools if they need to implement Zipi8 on other
FPGA platforms.

Finally, as shown in Table 6, Zipi8 uses 11 out of 16
block RAMs available on the Lattice device. 9 uses of
SB_RAM2048x2 is directly instantiated in program
memory module, 1 use of SB_RAM256x16 is inferred to
map ‘stack’, and 1 use of SB_RAM256x16 is to map
‘spm_with_output_reg’ (SPM). Synplify Pro is unable to
map block memory in ‘two_banks_of_16_gp_reg’. The
reason is that the RAM block defined there mimics the
behaviour of Xilinx primitives which allows ‘Synchronous
Write, Asynchronous Read, with separate read/write address
bus’, while Lattice RAM primitives do not provide this
feature (Sync-Async R/W). Listing 14 shows the difference
in VHDL implementation of RAM block for Lattice devices
which has a subtle difference with Listing 10 which is the
VHDL implementation of RAM block for Xilinx devices.

Listing 14 General VHDL implementation of RAM32M
primitive with separate R/W

−− General ram module defined in ram.vhd file

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity ram_rw is

generic (DATA_WIDTH : positive;

ADDRESS_WIDTH : positive);

port (WCLK : in std_logic;

WE : in std_logic;

DI : in std_logic_vector (DATA_WIDTH−1 downto 0);

ADDR_RD : in std_logic_vector
(ADDRESS_WIDTH−1 downto 0);

ADDR_WR : in std_logic_vector
(ADDRESS_WIDTH−1 downto 0);

DO : out std_logic_vector (DATA_WIDTH−1 downto
0));

end ram_rw;

architecture Behavioural of ram32m_rw is

type ram_type is array ((2**ADDR_RD’length) −1 downto
0)

of std_logic_vector(DI’range);

signal ram_s_RD_WR : ram_type := (others=>
(others=>‘0’));

begin

 Modular transformation of embedded systems from firm-cores to soft-cores 273

−− Synchronous write, asynchronous read with

−− separate R/W

RamProc: process(WCLK) begin

if rising_edge(WCLK) then

if WE = ‘1’ then

ram_s_RD_WR(to_integer(unsigned(ADDR_WR))) <=
DI;

end if;

end if;

end process RamProc;

DO <= ram_s_RD_WR(to_integer(unsigned(ADDR_RD)));

end Behavioural;

6 Conclusions

In this paper a systematic approach is presented to transform
firm-core designs to soft-core ones. The proof of concept is
demonstrated by porting Xilinx PicoBlaze firm-core to a
soft-core, named ‘Zipi8’. It is then implemented on a tiny
Lattice FPGA device. This new macro is vigorously tested,
in order to be sure that it is fully compatible with the
original firm-core. The method proposed in this paper
improves flexibility with a slight change in resource
consumption on a Xilinx FPGA. PicoBlaze core consumes
123 LUTs, 76 registers, and 25 MUXes; whereas Zipi8
consumes only 139 LUTs, 66 registers, and no MUXes. The
LUT count on Lattice device is 382, a three-fold increase
due to lack of 5- and 6-input LUT primitives. As future
work, the proposed method can be scripted with the
primitive’s definition knowledge from FPGA vendor library
guides.

Acknowledgements

This research is supported financially by ‘the
Chulalongkorn Academic Advancement into Its 2nd
Century Project’. We would like to thank Prof. Ekachai
Leelarasmee and Asst. Prof. Kittiphan Techakittiroj for their
academic advices and continual encouragement. The student
is awarded a joint scholarship, composed of The 100th
Anniversary Chulalongkorn University Fund for Doctoral
Scholarship and The 90th Anniversary of Chulalongkorn
University, Rachadapisek Sompote Fund.

Appendices/supplementary materials are available
on request by emailing the corresponding author or
can be obtained under https://github.com/ehsan-ali-
th/firmcore_to_softcore_appendices.

References

Ahmad, S., Boppana, V., Ganusov, I., Kathail, V., Rajagopalan, V.
and Wittig, R. (2016) ‘A 16- nm multiprocessing system-on-
chip field-programmable gate array platform’, IEEE Micro,
Vol. 36, No. 2, pp.48–62 [online] https://doi.org/10.1109/
MM.2016.18.

Ahmed, O. (2018) Latest FPGAs in the Market, COEN 6501 –
Digital Design and Synthesis [online]
http://users.encs.concordia.ca/asim/COEN_6501/Lecture_Not
es/FPGA%20Report.pdf (accessed 23 November 2019).

Ali, E. and Pora, W. (2020) ‘Implementation and verification of
IEEE-754 64-bit floating-point arithmetic library for 8-bit
soft-core processors’, 8th International Electrical
Engineering Congress (iEECON), pp.1–4 [online]
doi: https://10.1109/iEECON48109.2020.229455.

American Institute of Aeronautics & Astronautics (2014) Guide
for the Verification and Validation of Computational Fluid
Dynamics Simulations, (AIAA G-077-1998(2002)) [online]
https://doi.org/10.2514/4.472855.001.

Amiri, M., Siddiqui, F.M., Colm, K., Woods, R. and Rafferty, K.
and Bardak, B. (2017) ‘FPGA-based soft-core processors for
image processing applications’, Journal of Signal Processing
Systems, Vol. 87, No. 1, pp.139–156, ISSN 1939-8115
[online] https://doi.org/10.1007/s11265-016-1185-7.

Ammendola, R., Barbanera, M., Bizzarri, M., Bonaiuto, V.,
Ceccucci, A., Checcucci, B., De Simone, N., Fantechi, R.,
Federici, L., Fucci, A., Lupi, M., Paoluzzi, G., Papi, A.,
Piccini, M., Ryjov, V., Salamon, A., Salina, G., Sargeni, F.
and Venditti, S. (2017) ‘Performance and advantages of a
soft-core based parallel architecture for energy peak detection
in the calorimeter Level 0 trigger for the NA62 experiment at
CERN’, Journal of Instrumentation, Vol. 12, No. 03 [online]
https://doi.org/10.1088/1748-0221/12/03/C03054.

AN 307 (2018) Intel® FPGA Design Flow for Xilinx
Users, Updated for Intel® Quartus® Prime Design Suite:
17.1 [online] https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/an/ an307.pdf.

Antonio-Torres, D., Villanueva-Perez, D., Canepa, E. and
Meraz, N.S. (2009) ‘A PicoBlaze-based embedded system for
monitoring applications’, International Conference on
Electrical, Communications, and Computers, pp.173–177
[online] https://doi.org/10.1109/CONIELECOMP.2009.49.

Anvar, S., Gachelin, O., Kestener, P., Le Provost, H. and
Mandjavidze, I. (2006) ‘FPGA-based systemon- chip designs
for real-time applications in particle physics’, IEEE
Transactions on Nuclear Science, June, Vol. 53, No. 3,
pp.682–687.

ARC (2002) International Completes Integration of Three
Subsidiaries Into One Company, 17 June [online]
https://www.design-reuse.com/news/3409/arc-international-
integrationsubsidiaries- into-one-company.html (accessed 23
November 2019).

Baklouti, M. and Abid, M. (2014) ‘Multi-softcore architecture on
FPGA’, International Journal of Reconfigurable Computing,
Vol. 2014 [online] https://doi.org/10.1155/2014/979327.

274 E. Ali and W. Pora

Barbareschi, M. and Bagnasco, P. (2017) ‘Implementation of a
reliable mechanism for protecting IP cores on low-end FPGA
devices’, International Journal of Embedded Systems, Vol. 9,
No. 4 [online] https://doi.org/10.1504/IJES.2017.086135.

Borawake, S.M. and Chilveri, P.G. (2014) ‘Implementation of
wireless sensor network using microblaze and picoblaze
processors’, Fourth International Conference on
Communication Systems and Network Technologies,
pp.1059–1064 [online] https://doi.org/10.1109/CSNT.2014.
216.

Bourdeauducq, S. (2013) ‘OpenCores project’, Navre AVR clone
(8-bit RISC) [online] https://opencores.org/projects/navre
(accessed 11 November 2019).

CAST Inc. L8051XC1: Legacy-Configurable 8051-Compatible
Microcontroller IP Core [online] http://www.cast-inc.com/ip-
cores/8051s/l8051xc1/index.html (accessed 15 November
2019).

Chapman, K. (2014) PicoBlaze for Spartan-6, Virtex-6, 7-Series,
Zynq and Ultra Scale Devices (KCPSM6) - Release 9, Xilinx,
Release 9, Xilinx Inc., USA.

Chen, D., Cong, J. and Pan, P. (2006) ‘FPGA design automation: a
survey’, Foundations and Trends in Electronic Design
Automation, Vol. 1, No. 3, pp.139–169,
http://dx.doi.org/10.1561/1000000003.

Claudiu, L., Sebastian, S. and Cristian, B. (2012) ‘Smart sensor
implemented with PicoBlaze multi-processors technology’,
IEEE 18th International Symposium for Design and
Technology in Electronic Packaging (SIITME), pp.241–245
[online] https://doi.org/10.1109/SIITME.2012.6384384.

Cofer, R.C. and Harding, B.F. (2013) ‘Chapter 14 – embedded
processing cores in rapid system prototyping with FPGAs’,
Accelerating the Design Process – Embedded Technology,
pp.185–209, ISBN 9780750678667 [online] https://doi.org/
10.1016/B978-075067866-7/50015-9.

Coonan, T. (2016) GitHub Project, risc8 [online]
https://github.com/brabect1/risc8 (accessed 20 November
2019).

Cuturela, D. (2009) ‘OpenCores project’, pAVR: 8 Bit Controller
that is Compatible with Atmel’s AVR Architecture [online]
https://opencores.org/projects/pavr (accessed 11 November
2019).

Digital Core Design, DP80390 – High performance MCU for
Applications Requiring Code Space Larger than 64 kB.
[online] https://www.dcd.pl/product/dp80390/ (accessed 17
November 2019).

Digital Core Design, DRPIC166X [online] https://www.dcd.pl
/product/drpic166x/ (accessed 15 November 2019).

Dunkels, A. (2003) ‘Full TCP/IP for 8-bit architectures’,
Proceedings of the 1st international conference on Mobile
systems, applications and services (MobiSys ‘03), pp.85–98,
ACM, New York, NY, USA, http://dx.doi.org/10.1145
/1066116.1066118.

Eberle, H., Wander, A., Gura, N., Chang-Shantz, S. and Gupta, V.
(2005) ‘Architectural extensions for elliptic curve
cryptography over GF(2/sup m/) on 8-bit microprocessors’,
IEEE International Conference on Application-Specific
Systems, Architecture Processors (ASAP’05), pp.343–349
[online] https://doi.org/10.1109/ASAP.2005.15.

Fawcett, B. (1996) ‘FPGAs as reconfigurable processing
elements’, IEEE Circuits and Devices Magazine, Vol. 12,
No. 2, pp.8–10 [online] https://doi.org/10.1109/101.485906.

Furber, S.B. (1989) VLSI Risc Architecture and Organization,
1st ed., CRC Press, ISBN 9780824781514.

Genßler, P.R. (2019) GitHub.com Project, PauloBlaze [online]
https://github.com/krabo0om/pauloBlaze (accessed 11
November 2019).

Good, T. and Benaissa, M. (2006) ‘Very small FPGA
application-specific instruction processor for AES’, IEEE
Transactions on Circuits and Systems I: Regular Papers, Vol.
53, No. 7, pp.1477–1486 [online] https://doi.org/10.1109/
TCSI.2006.875179.

Guzman, F. (2012) ‘OpenCores project’, Natalius 8 bit RISC
[online] https://opencores.org/projects/natalius_8bit_risc
(accessed 17 November 2019).

Hassan, M.N. and Benaissa, M. (2009) ‘Embedded software
design of scalable low-area elliptic-curve cryptography’,
IEEE Embedded Systems Letters, Vol. 1, No. 2, pp.42–45
[online] https://doi.org/10.1109/LES.2009.2034708.

Hays, K.I. (2016) ‘OpenCores project’, Open8 uRISC [online]
https://opencores.org/projects/open8_urisc (accessed 20
November 2019).

Hsu, C-F., Chung, I-F., Lin, C-M. and Hsu, C-Y. (2009)
‘Self-regulating fuzzy control for forward DC-DC converters
using an 8-bit microcontroller’, IET Power Electronics,
Vol. 2, pp.1–12 [online] https://doi.org/10.1049/iet-
pel:20070179.

IEEE Standard for Verilog Hardware Description Language
(2006) IEEE Std 1364-2005 (Revision of IEEE Std 1364-
2001) [online] https://doi.org/10.1109/IEEESTD.2006.99495.

IEEE Standard VHDL Language Reference Manual (2009) IEEE
Std 1076-2008 (Revision of IEEE Std 1076-2002) [online]
https://doi.org/10.1109/IEEESTD.2009.4772740.

Ivanov, V.N. (2015) ‘Using a PicoBlaze processor to traffic light
control’, Cybern. Inf. Technol., Vol. 15, No. 5, pp.131–139
[online] https://doi.org/10.1515/cait-2015-0023.

Jamil, T. (1995) ‘RISC versus CISC - why less is more’, IEEE
Potentials, Vol. 14, No. 3, pp.13–16 [online]
https://doi.org/10.1109/45.464688.

Khan, S.A. and Hossain, M.I. (2010) ‘Design and implementation
of microcontroller based fuzzy logic control for maximum
power point tracking of a photovoltaic system’, International
Conference on Electrical & Computer Engineering
(ICECE 2010), pp.322–325 [online] https://doi.org/10.1109/
ICELCE.2010.5700693.

Knupp, P. and Salari, K. (2002) Verification of Computer Codes in
Computational Science and Engineering, 1st ed., Chapman
and Hall/CRC, ISBN 9781584882640.

Kocik, P.B. (2007) PauloBlaze [online] http://bleyer.org/pacoblaze
(accessed 27 November 2019).

Lattice Mico8 Open, Free Soft Microcontroller [online]
http://www.latticesemi.com/Products/DesignSoftwareAndIP/I
ntellectualProperty/ IPCore/IPCores02/Mico8.aspx (accessed
11 November 2019).

Lattice Semiconductor (2017) iCE40TM LP/HX Family
Data Sheet, DS1040 Version 3.4 [online]
http://www.latticesemi.com//media/LatticeSemi/Documents/-
DataSheets/iCE/iCE40LPHXFamilyDataSheet.pdf (accessed
20 November 2019).

Lattice Semiconductor [online] https://www.latticesemi.com/en
(accessed 13 November 2019).

Lysecky, R. and Vahid, F. (2005) ‘A study of the speedups and
competitiveness of FPGA soft processor cores using dynamic
hardware/software partitioning’, Design, Automation and Test
in Europe, Vol. 1, pp.18–23 [online] https://doi.org/10.1109/
DATE.2005.38.

 Modular transformation of embedded systems from firm-cores to soft-cores 275

Makowski, D. et al. (2013) ‘Firmware upgrade in xTCA systems’,
IEEE Transactions on Nuclear Science, Vol. 60, No. 5,
pp.3639–3646, October [online] https://doi.org/10.1109/
TNS.2013.2275073.

Mandala, V. (2011) A Study of Multiprocessor Systems using the
Picoblaze 8-bit Microcontroller Implemented on Field
Programmable Gate Arrays, Electrical Engineering
Theses [online] http://hdl.handle.net/10950/59 (accessed 20
November 2019).

Mattson, R. (2004) Evaluation of PicoBlaze and Implementation of
a Network Interface on a FPGA, Student thesis, Electrical
Engineering, Linköping University [online]
http://liu.divaportal.org/smash/record.jsf?pid=diva2%3A1973
0&dswid=-9283 (accessed 20 November 2019).

Mazidi, M.A., Causey, D. and McKinlay, R. (2016) PIC
Microcontroller and Embedded Systems: Using Assembly and
C for PIC18, 2nd ed., MicroDigitalEd, ISBN-10
099792599X, ISBN-13 978-0997925999.

Mazidi, M.A., Gillispie Mazidi, J. and McKinlay, R.D. (2007) The
8051 Microcontroller and Embedded Systems using Assembly
and C, 2nd ed., Prentice Hall.

McGeer, P.C., Sanghavi, J.V., Brayton, R.K. and
Sangiovanni-Vicentelli, A.L. (1993) ‘ESPRESSO-
SIGNATURE: a new exact minimizer for logic functions’,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 1, No. 4, pp.432–440 [online] https://doi.org/
10.1109/92.250190.

Merchant, F., Pujari, S. and Patil, M. (2006) ‘Platform Independent
8-bit Softcore for SoPC’, Proceedings of the International
Multi-Conference of Engineers and Computer Scientists,
Vol. 2, p.2175.

MicroCore Labs, MCL51 Core [online]
http://www.microcorelabs.com/mcl51.html (accessed 21
November 2019).

MicroCore Labs, MMCL65 6502 Core [online]
http://www.microcorelabs.com/mcl65.html (accessed 21
November 2019).

Microsemi IP Module - Core8051 [online]
http://soc.microsemi.com/products/ip/search/detail.aspx?id=5
41 (accessed 17 November 2019).

Morse, R., Ravenel, B.W., Mazor, S. and Pohiman, W.B. (1980)
‘Intel microprocessors – 8008 to 8086’, Computer, Vol. 13,
No. 10, pp.42–60 [online] https://doi.org/10.1109/
MC.1980.1653375.

Mukaro, R. and Carelse, X.F. (1999) ‘A microcontroller-based
data acquisition system for solar radiation and environmental
monitoring’, IEEE Transactions on Instrumentation
and Measurement, Vol. 48, No. 6, pp.1232–1238 [online]
https://doi.org/10.1109/19.816142.

Nade, J.B. and Sarwadnya, R.V. (2015) ‘The soft core processors:
a review’, International Journal of Innovative Research in
Electrical, Electronics, Instrumentation and Control
Engineering (IJIREEICE), Vol. 3, No. 12, pp.197–203
[online] https://doi.org/1010.17148/IJIREEICE.2015.31241.

Ni, X., Zhang, H., Wang, D. and Luo, J. (2017) ‘Implementation
of dynamic reconfigurable interpolator for open architecture
CNC by using FPGA’, International Journal of Embedded
Systems, Vol. 9, No. 1 [online] https://doi.org/10.1504
/IJES.2017.081727.

Nie, Z., Li, Z., Wang, L., Guo, S., Deng, Y., Rangyu and
Dou, Q. (2020) ‘Laius: an energy-efficient FPGA CNN
accelerator with the support of a fixed-point training
framework’, International Journal of Computational Science
and Engineering, Vol. 21, No. 3 [online] https://doi.org/
10.1504/IJCSE.2020.106064.

Ortega-Sanchez, C. (2011) ‘MiniMIPS: an 8-Bit MIPS in an
FPGA for educational purposes’, 2011 International
Conference on Reconfigurable Computing and FPGAs,
pp.152–157 [online] https://doi.org/10.1109/ReConFig.
2011.62.

Perera, D.G. and Li, K.F. (2019) ‘A design methodology for
mobile and embedded applications on FPGA-based dynamic
reconfigurable hardware’, International Journal of Embedded
Systems (IJES), Vol. 11, No. 5 [online] https://doi.org/10.
1504/IJES.2019.10018522.

Pham, H., Pillement, S. and Piestrak, S.J. (2013) ‘Low-overhead
fault-tolerance technique for a dynamically reconfigurable
softcore processor’, IEEE Transactions on Computers,
Vol. 62, No. 6, pp.1179–1192 [online] https://doi.org/10.1109
/TC.2012.55.

Possa, P., Schaillie, D. and Valderrama, C. (2011) ‘FPGA-based
hardware acceleration: a CPU/accelerator interface
exploration’, 18th IEEE International Conference on
Electronics, Circuits, and Systems, pp.374–377 [online]
https://doi.org/10.1109/ICECS.2011.6122291.

Rodríguez-Andina, J.J., Valdés-Peña, M.D. and Moure, M.J.
(2015) ‘Advanced features and industrial applications of
FPGAs – a review’, IEEE Transactions on Industrial
Informatics, Vol. 11, No. 4, pp.853–864 [online]
https://doi.org/10.1109/TII.2015.2431223.

Romeo, D., LaMagna, J., Hogan, I. and Squire, J.C. (2018) ‘An
‘Introduction to soft-core processors and a biomedical
application’, IEEE Potentials, Vol. 37, No. 2, pp.13–18
[online] https://doi.org/10.1109/MPOT.2017.2733341.

Romero-Troncoso, R.D.J., Ordaz-Moreno, A., Vite-Frias, J.A. and
Garcia-Perez, A. (2006) ‘8-bit CISC microprocessor core for
teaching applications in the digital systems laboratory’, IEEE
International Conference on Reconfigurable Computing
and FPGA’s (ReConFig 2006), pp.1–5 [online]
https://doi.org/10.1109/RECONF.2006.307782.

Santa, F.M., Rodríguez, W.S. and Sánchez, F.R. (2018) ‘8-bit
softcore microprocessor with dual accumulator designed to be
used in FPGA’, Vol. 22, No. 56, pp.40–50 [online]
https://doi.org/10.14483/22487638.12976.

Sharat, B., Chandra, V., Kolin, P., Balakrishnan, M. and
Lavenier, D. (2017) ‘Hardware acceleration of de novo
genome assembly’, International Journal of Embedded
Systems, Vol. 9, No. 1 [online] https://doi.org/10.1504
/IJES.2017.081729.

Silvaco HCS08 Processor: 8-bit HCS08 Microcontroller Core
Implemented in Freescale’s MC9S08xx Family Devices
[online] https://www.silvaco.com/products/IP/hcs08/
index.html (accessed 17 November 2019).

Silvaco M8051EW and M8051W: High-Performance Versions of
the Popular 8051 8-bit Microcontroller [online]
https://www.silvaco.com/products/IP/m8051ewm8051w/inde
x.html (Accessed 17 November 2019).

Smith, D.J. (1996) ‘VHDL and Verilog compared and
contrasted-plus modeled example written in VHDL,
Verilog and C’, 33rd Design Automation Conference
Proceedings, pp.771–776 [online] https://doi.org/10.1109/
DAC.1996.545676.

Teubner, J. and Woods, L. (2013) Data Processing on FPGAs,
Synthesis Lectures on Data Management,
ISBN 9781627050609 [online] https://doi.org/10.2200/
S00514ED1V01Y201306DTM035.

276 E. Ali and W. Pora

Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C.,
Pepin, J.E. and Rodriguez, E.A. (2004) Concepts of Model
Verification and Validation, Los Alamos National Lab.,
Los Alamos, NM (US) [online] https://doi.org/
10.2172/835920.

Tong, J.G., Anderson, I.D.L. and Khalid, M.A.S. (2006)
‘Soft-core processors for embedded systems’, International
Conference on Microelectronics, pp.170–173 [online]
https://doi.org/10.1109/ICM.2006.373294.

VAutomation Inc. (2018) V8-uRISC 8-bit RISC Microprocessor,
Product Specification, VAutomation, Inc. [online]
http://ebook.pldworld.com/_semiconductors/Xilinx/AppLINX
%20CD-ROM/Rev.7%20(Q3-
1998)/docs/wcd0002a/wcd02aaa.pdf (accessed 23 November
2019).

Wang, X. and Ziavras, S.G. (2015) ‘A multiprocessor-on-a-
programmable chip reconfigurable system for matrix
operations with power-grid case studies’, International
Journal of Computational Science and Engineering,
Vol. 10, Nos. 1–2 [online] https://doi.org/10.1504/
IJCSE.2015.067043.

Wharton, J. (1980) An Introduction to the Intel MCS-51
Single-Chip Microcomputer Family, Application Note AP-69,
May, Intel Corporation, Application Note AP-69, May, Intel
Corporation, USA.

Xilinx (2011) 7 Series FPGA Libraries Guide for Schematic
Designs - UG799 (v 13.2) [online] https://www.xilinx.com
/support/documentation/sw_manuals/xilinx13_2/7series_scm.
pdf (accessed 20 November 2019).

Yang, Y. (2010) ‘Implementation of a colorful RGB-LED light
source with an 8-bit microcontroller’, 5th IEEE Conference
on Industrial Electronics and Applications, pp.1951–1956
[online] https://doi.org/10.1109/ICIEA.2010.5515525.

Zanikopoulos, A., Harpe, P., Hegt, H. and van Roermund, A.
(2005) ‘A flexible ADC approach for mixed-signal SoC
platforms’, IEEE International Symposium on Circuits and
Systems, Vol. 5, pp.4839–4842 [online] https://doi.org/10.
1109/ISCAS.2005.1465716.

Zavala, A.H., Nieto, O.C., Ruelas, J.A.H. and Domínguez, A.R.C.
(2015) ‘Design of a general purpose 8-bit RISC processor for
computer architecture learning’, Computación y Sistemas,
Vol. 19, No. 2, pp.371–385, ISSN 1405-5546 [online]
https://doi.org/10.13053/CyS-19-2-1941.

Zaykov, P. (2007) ‘MIMD implementation with PicoBlaze
microprocessor using MPI functions’, Proceedings of the
2007 International Conference on Computer Systems and
Technologies (CompSysTech ‘07), Article 4 [online]
https://doi.org/10.1145/1330598.1330604.

