State observer-based adaptive fuzzy backstepping point stabilisation control of underactuated unmanned surface vehicles with input constraints
by Weixiang Zhou; Pingfang Zhou; Zheng Chen; Dengping Duan
International Journal of Vehicle Design (IJVD), Vol. 84, No. 1/2/3/4, 2020

Abstract: In this study, the point stabilisation control of an underactuated unmanned surface vehicle (USV) is addressed considering input constraints, missing velocity measurement and external disturbance. Different from other methods, in this proposed control framework, the point stabilisation is transformed into a straight line path-following problem. Then a state observer-based adaptive fuzzy backstepping controller is designed. The missing velocity variables are estimated by an extended state observer (ESO). An adaptive fuzzy algorithm is used to approximate the unknown nonlinear items in the dynamics model of the vehicle, and auxiliary items are introduced to deal with the actuator saturations. The system stability is proved by using Lyapunov theory, and the effectiveness of the proposed approach is demonstrated by the simulation results.

Online publication date: Fri, 25-Jun-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com