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1 Introduction 
Cloud computing has emerged as a new alternative to 
traditional data centres due to the various advantages it 
provides, including cost saving, scalability and availability. 
A cloud provider is responsible for providing remote tools 
and services, including platform-as-a-service (PaaS), 
infrastructure-as-a-service (IaaS) and software-as-a-service 
(SaaS). This is typically accessed through the web or an 
application programming interface (API). Despite its great 
potential, there still some major hurdles to overcome, most 
notably the challenges related to security (Zhang et al., 
2018; Kong et al., 2017), energy-efficiency and pricing 
mechanisms. Compared to other problems, less attention has 
been paid to users’ satisfaction and fair pricing policy  
and resources scheduling optimisation (Shen et al., 2016; 
Zhang et al., 2017; Li et al., 2018). Game theory was 
initially developed in economic studies for strategic 
decision making and pricing policy (Allon and Gurvich, 
2010; Lin and Sibdari, 2009). Currently, it has been widely 
used as an important approach to analyse and model the 
competition among cloud providers and the behaviour of 
customers in order to reduce costs and maximise profits. In 
doing so, an appropriate mathematical model is formulated 
to make a better pricing strategy in cloud markets according 
to various parameters, like price, quality of service (QoS), 
security, user satisfaction, etc. Of course, the price needs to 
be adjusted based on new information about competitors’ 
behaviour and consumers’ preferences and willingness-to-
pay (WTP) for cloud services. Obviously, the best pricing 
policy for optimising profits is calculated based on the key 
factors affecting the future growth of the cloud market and 
consumers’ changing needs. On the one hand, cloud 
providers would set a pricing policy that attracts new 
customers and increases their revenue regardless of the 
eventual reactions of other providers and clients. Such 
situation would create a market dominated by only a few 
large cloud service providers, and this can lead to unhealthy 
competition. Globally, the vast majority of existing  
game-theoretic analyses on cloud markets focus on a model 
of decision making under bounded rationality or the  
non-cooperative game model. The central issue of non-
cooperative game is that each cloud provider determines the 
pricing strategy without knowing the strategy chosen by 
other public cloud vendors. For that reason, several 
parameters are generally used to attract the target customers 
in accordance with service-level agreement (SLA), among 
them: response time, price, security, reliability, costs, and 
reputation. On the other hand, cloud consumers would opt 
for a pricing model that satisfies their expectations and 
ensures maximum payoffs with high probability. In dealing 
with the users’ behaviour, we suppose that their preferences 
are represented by a probabilistic model. The real challenge 
in cloud computing is finding an optimal way to form a 
stable market and reach equilibrium between the customers’ 
satisfaction and the providers’ expectations. 

It is important to note that a fair and healthy competition 
between various cloud providers implies a detailed analysis 
of the players’ payoffs and the interaction among the 

various players in the market. In this regard, the cloud 
service takes care of, among other things, the user’s 
preferences, processing power, user’s behaviours and user 
experience (UX). Figure 1 illustrates the key concepts of a 
cloud market and the interaction between the clients and the 
providers. 

Figure 1 Basic model of competition in cloud market  
(see online version for colours) 

 

In general, security issues and sophisticated pricing  
models must be properly addressed to make this new 
concept viable and extremely successful. Fortunately, 
security concerns have been addressed in the literature, and 
several cryptographic techniques are suggested for 
preventing the outsourced data from the unauthorised  
access and modification. In contrast, the competition in a 
non-competitive market can give rise to a variety of 
managerial issues, including those related to potential 
pricing policies and the billing management system. 
Specifically, price competition can be fierce, especially in 
markets with similar cloud-based services. It is important to 
note that a situation with imperfect competition would 
undoubtedly lead to a oligopolistic or monopolistic market 
(Laatikainen et al., 2013). Intuitively, a higher price for 
cloud services risks losing users as well as decreasing sales 
revenue. In the same line, cloud providers that opt for low 
pricing models to attract more users may face overwhelming 
demands accompanied by a dramatic decrease in the quality 
of cloud services. In light of this fact, we need to develop 
the most appropriate pricing strategy that will attract a large 
number of potential customers as well as able to generate 
much more revenue.  

Although considerable research has been devoted to 
price strategy, only a few studies have explored the users’ 
behaviour when making decisions about the adoption of 
cloud services. This work aims at addressing the potential 
impacts of users’ preferences and users’ price sensitivity on 
the overall cloud services market. Furthermore, it shows 
how cloud providers can take the advantage of those types 
of bounded rationality to enhance their reputation and 
increase profit margins. The contribution of this paper is 
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threefold. First, we show that we can achieve a fair pricing 
model by doing a thorough analysis of both cloud providers’ 
needs and users’ expectations. Second, we suggest a non-
cooperative game theoretical model to build an effective 
pricing strategy (Osborne, 2004) that ensures economic 
benefits for both cloud providers and clients. Third, we 
conduct a deeper analysis on the impact of the users’ 
preferences and users’ price sensitivity on the optimal 
competitive strategy, and the potential effect of these factors 
on the pricing schemes in the cloud computing market. 

The remainder of this paper is organised as follows.  
In Section 2, we highlight the contribution of this study to 
the subject of research we are concerned with in this paper  
and the gaps it aims to fill in with respect to the existing 
literature. Sections 3 and 4 formulate the research problem 
with regard to the users’ behaviour and the utility model.  
In Section 5, we present the theory of non-cooperative 
games study and the proposed model to find the Nash 
equilibrium, as well as determining the robust best-response 
strategies. Section 6 presents the numerical analysis 
concerning the verification and validation of the proposed 
model along with the subsequent results. In Section 7,  
we end this study by some concluding remarks and 
recommendations for further research. 

2 Related work 
The challenges of the cloud computing can have two 
dimensions:  

• an intra-provider that deals with internal factors that 
affect operational expenses such as load balancing, 
energy, hardware and so on 

• an inter-provider that is associated with market 
competition among providers including price, QoS and 
reputation. 

Optimisation models are vastly used in job scheduling 
strategies and in the optimal utilisation of cloud resources 
(Sangaiah et al., 2019a, 2019b, 2020). Recent years have 
seen a tremendous rise in the number of researches related 
to the second research direction concerns. In this context, a 
review of related works in pricing policy and resource 
allocation, using game theory models, is presented here. 

In Hammoud et al. (2020), the authors proposed a 
genetic algorithm to improve the total payoffs in federated 
clouds. Additionally, evolutionary game theory is used for 
minimising the difference between profits among cloud 
providers so as to achieve a stable strategy that guarantees 
fairness between providers. However, the authors do not 
take into consideration of the user’s behaviour. Kishor et al. 
(2020) suggested game-theoretic model for an effective 
load-balancing mechanism in distributed systems. The 
proposal guarantees equitable response time to all 
consumers by reducing both the processing time and the 
price of a service. Nevertheless, this work do not take into 
account two parameters, i.e., energy cost and server 
availability. In Swathy et al. (2020), the authors rely on 

available CPU and memory resource to create Stackelberg 
game model in order to allocate tasks to each host according 
to resource requirement, price strategy, resource availability 
and performance. Despite its success in creating an effective 
tasks scheduling, the proposal did not specifically deal with 
issues related to the priority of jobs and the queue of waiting 
jobs. In Ghobaei-Arani et al. (2019), the authors propose an 
powerful solution to manage cloud elasticity. They use an 
adaptive neuro-fuzzy inference system (ANFIS) model for 
load prediction, and fuzzy decision tree (FDT) algorithm for 
resources allocation. However, although its objectives are 
ambitious, the proposed system does not ensure a fair and 
equitable competition within the cloud providers market. 
Anglano et al. (2019) proposed a cooperative game for 
coalition formation in fog computing providers. This would 
help fog infrastructure providers (FIPs) to share their 
resources so as to increase their profits. Despite this model 
reduces costs and meets QoS requirements, it does not 
ensure a fair competition among fog providers. 

Chen et al. (2020) propose a Stackelberg game-based 
framework to address the problem of fair resource allocation 
in a mobile edge computing system. This solution helps find 
the best resource demand strategy and an equilibrium  
price. However, it clearly does not take into consideration 
users’ preferences. In Dibaj et al. (2020), double auctions 
are proposed to define an appropriate pricing mechanism 
and support the dynamic nature of cloud environments. The 
proposal is an efficient online cloud auction method for a 
sustainable pricing model and resource allocation. Despite 
the fact that this solution ensures both cost effective and fair 
competition between cloud providers, the research does not 
analyse the impact of users’ behaviours and characteristics 
on competition in the cloud computing sector. In this 
context, the authors in Feng et al. (2014) proposed a model 
to help each cloud provider to select its optimal prices to 
compete with the other IaaS. The primary objective is to 
find an equilibrium price in the duopoly and oligopoly 
market. This study shows that improving resource capacity 
is less profitable than other performance parameters. 
However, this work does not consider the impact of the 
consumers’ preferences on the profitability of remote 
services. In light of this fact, the authors in Vengerov (2008) 
and Xu and Li (2013) provide a game theoretical analysis of 
the relationship between profitability and the users’ 
behaviour. The results show that there is a significant level 
of connection between these items so as to find the price in 
competitive markets. Despite its importance, this work does 
not take into consideration the competition among cloud 
providers. The authors propose in Truong-Huu and Tham 
(2014) a discrete choice model to represent the users’ choice 
behaviour so as to create a dynamic price policy. In this 
case, an optimal cooperation structure is used for selecting 
the right client’s requests for each cloud provider. However, 
the impact of the users’ preference was not well explored 
during the competition among cloud providers. In Xu et al. 
(2015), the authors analyse the market that consists only of 
one proactive cloud provider. The latter determines the type 
of pricing strategy that need to be adopted by other 
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competitors. In the same line, the work in Chen and Frank 
(2004) aims at determining the optimal profit and efficient 
pricing in a monopoly market. Often, it can be expected that 
the equilibrium is socially efficient if the users’ preferences 
are linear. Another example demonstrating these concepts  
is that services with the higher value generate high profit 
and take a larger market share, as illustrated in Chen and 
Wan (2003). However, adopting this approach to cloud 
market is not as good as it was in the case of the model 
based on make-to-order business. In Daoud et al. (2008, 
2009), and Shu and Varaiya (2003), the authors propose a 
pricing model for maximising the revenue of their  
data centres and users’ utilities as well. To provide a  
deeper analysis of the cloud competition, Yeo et al. (2010) 
suggested a game theoretical approach to model the 
advantages and disadvantages of fixed, variable and 
autonomic pricing mechanism. Accordingly, autonomic 
pricing would help cloud providers to achieve higher 
revenue than other models. Similarly, Taghavi et al. (2020) 

proposed a two-stage game theoretical framework to build a 
fair pricing strategy for the cloud market, especially in the 
case of IaaS. First, they use the Stackelberg game to build 
an ideal pricing strategy that captures the users’ needs to 
ultimately increase the cloud demands and the profitability. 
Second, they built a differential game model based on price 
and quality to preserve a fair competition in the cloud 
market. However, authors neglect the fact that customers’ 
satisfaction plays a central role in creating a healthy cloud 
market. 

Although many efforts have been made to encourage a 
fair and effective competition among cloud providers, many 
options are possible and there are still improvements in 
order to respond to the changing requirements of users and 
the increasing demands of cloud services. Besides the 
quality and affordable services, we propose a model that 
takes into consideration the users’ preferences as well as 
price sensitivities. Table 1 summarises the existing works 
and the one we propose. 

Table 1 Summary of our work compared to existing works 

Work  Techniques and tools Advantages Disadvantages 
Hammoud et al. 
(2020) 

• Genetic algorithms 
• Evolutionary game theory 
• Cloud harmony 

• It increases the profit and assures 
market stability 

• They neglect the impact of bounded 
rational users 

Kishor et al. 
(2020) 

• Game-theoretic model 
• Load balancing game 

• It minimises response time and 
minimises cost 

• They did not take into account 
security level and availability 

Swathy et al. 
(2020) 

• Stackelberg game theory 
• They rely on price and parameters 

(CPU and memory) 

• It reduces number of task failures 
in load balancing for cloud 
computing 

• They did not consider the 
computational complexity of each job 

Ghobaei-Arani 
et al. (2019) 

• Adaptive Neuro Fuzzy Inference 
System (ANFIS) predictor 

• Fuzzy Decision Tree 

• It guarantees the QoS 
requirements in a dynamic 
environment 

• They did not take into account 
response time and privacy 

Anglano et al. 
(2019) 

• Game-theoretical framework • It creates a fair cooperation 
among Fog providers 

• Their approach does not distinguish 
the ratings for each node’s QoS 

Chen et al. 
(2020) 

• Stackelberg game in a mobile edge 
computing system 

• It maximises revenue and ensures 
high utility for users 

• This work deals only with static 
environment 

Dibaj et al. 
(2020) 

• Dynamic online double auction 
mechanism 

• It obtains sustainable pricing 
scheme for cloud market 

• They did not take into account QoS 
requirements 

Feng et al. 
(2014) 

• Game theoretical techniques in 
monopoly, duopoly and oligopoly 
market 

• It defines optimal price for cloud 
services 

• It does not take into account the brand 
and reputation of the cloud providers 

Vengerov 
(2008) 

• Reinforcement learning approach • It enables to set dynamic pricing 
policies 

• It neglects the case of cooperative 
markets 

Xu and Li 
(2013) 

• Stochastic dynamic program • It maximises revenue when using 
dynamic cloud pricing 

• It neglects competitive among cloud 
providers 

Truong-Huu and 
Tham (2014) 

• Non-cooperative stochastic game • It helps create an optimal 
cooperation strategy for cloud 

• It does not take into account 
consumers’ brand preferences 

Xu et al. (2015) • Game theory for dynamic cloud 
pricing 

• It maximises the cloud provider’s 
revenue 

• It does not take into account users’ 
behaviours 

Chen and Frank 
(2004) 

• Game theory in a monopoly market 
• Social welfare 

• It defines an optimal price that 
takes into account service’s 
delays 

• It neglects others some factors that 
attract consumers such as quality and 
brand 

Daoud et al. 
(2009) 

• Stackelberg game • It provides an optimal pricing 
policy for uplink power 

• It does not take into account users’ 
preferences 
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Table 1 Summary of our work compared to existing works (continued) 

Work  Techniques and tools Advantages Disadvantages 
Shu and Varaiya 
(2003) 

• Game theory  • It provides a solution for 
congestion control 

• It does not take into account quality of 
service (QoS) 

Yeo et al. (2010) • Autonomic pricing mechanism • It used autonomic metered pricing 
to self-adjust prices and increase 
revenue 

• It does not take into account the 
impact of competition and users’ 
preferences on price strategy 

Taghavi et al. 
(2020) 

• Stackelberg game 
• Differential game 

• It creates a healthy competition 
among clouds 

• They neglect the impact of users’ 
preferences 

The proposed 
approach 

• Game-theoretic model • It takes into consideration 
customers’ preferences 

• Some parameters are ignored such as 
QoS and security 

 
3 Users utility model 
The competition among cloud providers is formulated as a 
non-cooperative game. Besides, we rely on the multinomial 
logit (MNL) approach to describe the user’s discrete choice 
models. The primary objective is to find the probability of a 
cloud user to choose the best strategic option among a set of 
alternatives (Train, 2003). This study aims to develop an 
effective pricing strategy for cloud providers, especially for 
IaaS services. In this concept, needed resources are 
dynamically allocated to a client over the Internet without 
installing them on promises. Moreover, users pay for the 
consumption of remote services based on storage use, 
computing power and bandwidth. 

We consider cases involving N providers actively 
competing against each other for K users. Each cloud 
computing delivers M different types of IaaS services with 
various capabilities and performance. When using fixed-
pricing strategy, each remote cloud resource has an 
associated cost, set by the cloud provider i, typically 
expressed as ,1 ,2 ,3 , ( , , , , ).i i i i i MP p p p p= …  In this sense,  

K users choose the provider that is able to fully satisfy their 
requirements in terms of price and performance. This 
selection depends heavily on the quality and properties of 
each online resource as well as the user’s preferences.  

In light of this context, the proposed framework is 
composed of the following core modules: Client (or a 
broker acting on its behalf), Master and Execution. After 
successful authentication, the Master module determines the 
optimal pricing strategy based on the user’s requirements 
and their preferences. Next, Execution module is designed 
to distribute the users’ requests across several data centres 
so as to achieve the optimal resource scheduling and 
promote the healthy competition among cloud providers. 
Figure 2 provides the principle and the key elements of the 
proposed solution. 

For an effective resource management system, 
computational overhead, which is associated with the 
decision-making process, is automatically distributed across 
multiple cloud servers. Figure 3 shows the interaction 
between the user/broker and the cloud providers. 

Figure 2 Fundamental elements of the proposed framework (see online version for colours) 
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Figure 3 Flow diagram of price negotiation for cloud resource provisioning (see online version for colours) 

 
 
Definition 1 (Request matrix): Let rk be a set of requests 
sent by the user k to use different M services delivered  
by cloud providers. Formally, the request matrix can be 
represented as a K × M dimensional matrix. In this case, the 
arrows refer to the cloud resources required by a user, while 
columns show available remote resources. 
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Definition 2 (User’s price sensitivity): Let βk,i denote price 
sensitivity of the user k on price of resource offered by the 
cloud provider i (CPj). Generally speaking, customers 
compare the costs and benefits of a given cloud service. 
Indeed, the users show their reactions to changes in price 
levels so as to obtain maximum benefits from their 
investments. In reality, high price sensitivity means that 
users will easily refuse to subscribe on a service based on its 
price. In contrast, low price sensitivity means that they are 
usually willing to pay more for high quality services. 

Concretely, we use the following formula to calculate 
the total costs of resources offered by the cloud provider i to 
the user k. 

, , , ,
1

 
M

k i k j k i i j
j

C r pβ
=

=  (1) 

Where, pi,j refers to the price of resource ri,j. 

Definition 3 (User’s preference): The user’s choices  
are affected by psychological factors such as comfort, 
flexibility and brand loyalty (Train, 2003). The user-defined 
preference function is commonly denoted by ηk,i. 

In this paper, we rely on the multinomial logit (MNL) 
model to describe the users’ discrete choice for the 
modelling of their political preferences in a probabilistic 
way. In doing so, users are able to independently select the 
cloud provider that maximises their payoffs and reduce the 
cost of their utility with higher probability. 

As For instance, the user k uses ready-to-use services 
offered by the cloud provider i. Basically, the utility 
function of the user k is often expressed as in equation (2).  

, , , ,k i k i k i k iU Cα η= − +  (2) 

In this case, αk,i refers to the total benefits received when 
using IT resources from the cloud provider i. This parameter 
is obtained using equation (3): 

, , ,
1

M

k i k j i j
j

rα λ
=

=  (3) 

λi,j is the benefit per unit of the resource j offered by the 
cloud provider i. It reflects the relative capacity to satisfy 
the user’s requirements. 

Ck,i is the total cost that a user k needs to pay for using 
the resources offered by the cloud provider i. 

As shown in equation (2), the utility function is 
decomposed into two parts. The first one, which is 
expressed as αk,i – Ck,i, must be established ahead of time by 
the cloud provider i. The second part refers to the user’s 
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preference ηk,i, which is usually unknown to the cloud 
providers. Formally, this unknown part is a random variable 
that can take any numeric value in a specified range. In light 
of this fact, we suppose that ηk,i is independent and 
identically distributed (Train, 2003). The most common 
approach to representing the probability distribution is the 
extreme value type I distribution, which is also called 
Gumbel distribution (Gumbel, 1961). Accordingly, the 
density of unobserved component of the utility ηk,i can be 
expressed as follows:  

,
,

, ( )  
k i

k i e
k if e e

ηηη
−− −=  (4) 

Similarly, the cumulative distribution is calculated as: 
,

, ( )  
k ie

k iF e
η

η
−−=  (5) 

The following equation gives the probability that the  
user k chooses the cloud provider i, which is denoted as ρk,i: 

'
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Therefore, the probability ρk,i is:  
( )( )  , , , , ,

,

C Ck i k i k i k i k ie
k i e

η α α

ρ
+ − −′− ′−=  (6) 

Taking into account that ηk,i is independent, the cumulative 
distribution for all i ≠ i′ is normally the product of the 
individual cumulative distribution, as shown in equation (7).  

( ) ( )( ) , , , , ,

, ,|
C Ck i k i k i k i k ie

k i k i
i i

e
η α α

ρ η
′+ − ′− − −−

′≠

= ∏  (7) 

In general, finding the closed-form of the probability that 
the user k opts for the cloud provider i implies the utilisation 
of both the density function and the cumulative distribution 
(Train, 2003). The expression of this choice is given by 
formula (8) 

,

,

 

,   

1

exp
exp

k i

k i

U

k i N U

i

ρ
′

′=

=
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 (8) 

Likewise, the probability of not choosing the provider i  
is given as:  

,1 k iρ−  (9) 

In this study, we assume that each user must select no more 
than one cloud provider Thus, users have the possibility to 
choose a cloud provider with an equal probability among all 
the N + 1 alternatives. Consequently, the probability that a 
user chooses the cloud provider i is expressed by: 

 

  
1

exp
1 exp

i

i

U

i N U
i

ρ
′

′=
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 (10) 

 
 

Where Ui is the utility of each user when choosing at most 
one online resource offered by the cloud provider i. This 
parameter is expressed in this competitive market model as: 

i i i i iU pλ β η= − +  (11) 

4 Monopoly pricing analysis 
In this case study analysis, we assume that each cloud 
provider offers infrastructure as a service. Therefore,  
the market is composed primarily of N cloud providers 
serving K users. The demand function is the expected value 
of demands for online resources, which can be written as in 
(Baslam et al., 2012). 

( ) . .i i id p K pρ=  (12) 

We formulate the expected profit, denoted πi, to help a 
cloud provider determine the usage price pi that maximises 
his profit. Concretely, the utility function of CP is the  
total revenue di minus the operating expenses γi(μi), which 
is directly related to software and hardware maintenance 
agreements, security measures and salaries. It is commonly 
calculated using equation (13): 

( ) ( ) ( )
( ) ( )

  

 . .  
i i i i

i i i i i

p d p

p K p

π γ μ
π ρ γ μ

= −

= −
 (13) 

In other words, each provider needs to pay the cost per unit 
of cloud services (Adams et al., 2009), denoted as μi.  
It reflects the amount of money spent to offer a specific 
cloud resource. In order to calculate the operating costs 
γi(μi), we use equation (14). 

( ) . .i i i iKγ μ ρ μ=  (14) 

Therefore, the profit function of the cloud provider i is 
formulated as follows: 

( )
( )

( )
 

  
1
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 . .( )

. exp ( )
1 exp

i

i

i i i i i

i i i i

U

i i iN U
i

p K p K

p K p

Kp p

π ρ ρ μ
π ρ μ

π μ
′

′=

= −

= −

= −
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 (15) 

5 Price competition in the duopoly case  
Competitive pricing is the process of selecting the strategic 
price that will assist in satisfying customers’ requirements 
and achieving high revenues as well. In the Duopoly case, 
only two IaaS cloud providers compete with each  
other to attract potential customers and gain market share. 
Usually, users act in a selfish fashion to maximise their 
payoffs. In this respect, we calculate the Nash equilibrium 
to obtain optimal outcome and maximise the expected 
payoff.  
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Definition 1 (Nash equilibrium): We consider a strategic 
form game composed of N different cloud providers (CPs) 

1 1  { , , ..., , },, ...,N NN p p π πΓ =  where pi and πi are the price 
strategy and utility set of each cloud provider i respectively. 
The existence of a Nash equilibrium in pure strategies for 
the vector price ( )* * *

1 , , Np p p= …  implies the existence of a 
utility function that maps a vector with a value for each 
objective, as in equation (16).  

( ) ( )* * * * *
 1 1 1 max , , ,  ,  , ,

i ii p P i i i Np p p p p pπ π∈ − += … …  (16) 

5.1 Price competition in a duopoly case 
In the case of duopoly market, the primary objective of the 
Nash equilibrium price is to define a model so that efficient 
and reasonable profit margins can be reached and sustained 
in a non-cooperative setting. In other words, each price 
policy is associated with expected payoffs. Moreover, the 
outcome of a game clearly depends on the reaction of the 
other cloud providers and all cloud users. 

We assume that πi(p1; p2) refers to the estimated profit 
of the cloud provider i when the cost associated with remote 
services is pi. Meanwhile, the other cloud provider i′ choose 
the price pi, where i ≠ j and i, i′ = 1, 2.  

Now let us consider a pair of price * *
1 2;( ),p p  one can 

easily check that the equilibrium set satisfies the following 
condition, as in equation (17). 

* * *
1 1 2 1 1 2 1

* * *
2 1 2 2 1 2 2

;  ; ,    0

;   ( ;

( ) (

 )

)

( ) ,   0

p p p p p
p p p p p

π π
π π

≥ ∀ ≥

≥ ∀ ≥
 (17) 

Since Nash equilibrium aims at determining the best 
response for each cloud service provider, the intersection of 
these two most favourable outcomes represents the Nash 
equilibrium point of the cloud market. 

We denote ( )i ip BR p ′=  to indicate the optimal price of 
the cloud provider i when the cloud provider i′ chooses the 
usage price .ip ′  In the duopoly competition market,  
we consider a pair of prices (p1, p2) such that ( )1 2p BR p=  
and ( )2 1p BR p=  as a Nash equilibrium. 

Formally, we rely on Algorithm 1 to find the Nash 
equilibrium in the duopoly case. 

 

In the same line, we use Algorithm 2, which is a graphical 
method, to determine the Nash equilibrium price in case it 
exists. 
 
 

 

5.2 The price equilibrium 
As discussed above, the primary objective of a non-
cooperative game theoretical model is to find the optimal 
pricing strategy that ensures a fair competition between two 
cloud providers. One obvious challenge is that whether a 
price strategy is the best response or not depends entirely on 
the existence of a Nash equilibrium.  

This section provides necessary and sufficient 
conditions that guarantee the existence and uniqueness of 
Nash equilibria. This implicitly determines the best-
response function (Ait Omar et al., 2019). In this context, 
Lemma 1 defines the first-order necessary condition for the 
existence of such equilibrium. 

Lemma 1 (Existence of equilibrium): The (necessary) first-
order condition for a given price pi to be a Nash equilibrium 
price implies that the following condition must be satisfied. 

( )
2  

2 1i i
i i

p μ
β ρ

> −
−

 (18) 

Proof: The condition to prove the concavity of the utility 
function is  

( )2

2 0i i

i

p
p

π∂
<

∂
 

In this respect, the first derivative of function (15) is:  

( ) ( ) ( ),1i i
i i i i k i i

i

p
k p k

p
π

β μ ρ ρ ρ
∂

= − − − +
∂

 (19) 

Note that ( )2 1 .i
i i i i i i i

ip
ρ β ρ β ρ β ρ ρ∂

= − + = − −
∂

 

Hence, the 2nd derivative of utility function is: 

( ) ( ) ( )( )

( )

2
2

2

 
1 2 1

 2 1

i i
i i i i i i

i

i i i

p
k p

p
k

π
β μ ρ ρ ρ

β ρ ρ

∂
= − − − −

∂
− −

 (20) 

Then  

( ) ( )( ) ( )2 1 2 1 2 1 0.i i i i i i i i ik p kβ μ ρ ρ ρ β ρ ρ− − − − − − <  

We conclude that  

( )
2 .

2 1i i
i i

p μ
β ρ

> −
−

 (21) 
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Lemma 2 (Uniqueness of equilibrium): Let f be Nash 
equilibrium for a given price competition. This equilibrium 
is unique in this game if only if the price satisfied this 
condition: 

( )
3 .

2 2 1i i
i i

p μ
β ρ

> −
−

 (22) 

Proof: We rely principally on the methodology used in  
Ait Omar et al. (2019) to prove the uniqueness of  
Nash equilibrium price. In this case, we suppose  
the conditions given by Rosen (1965) and Gabay and 
Moulin (1980). Accordingly, a concave game satisfies the 
dominance solvability condition (Lasaulce et al., 2009). 
This is illustrated in equation (23). 

Thus  

( ) ( )2 2

2   
,

0i i i i

j j ii i j

p p
p p p

π π
≠

∂ ∂
+ ≥

∂ ∂ ∂  (23) 

We have 

( ) ( )( ) ( )
2

  
,

 2 1   1i i
i i i i i i i

j j i i j

p
k p k

p p
π

β μ ρ β ρ ρ
≠

∂
= − − + −

∂ ∂
 (24) 

From equations (20) and (23), knowing that 
( )( )2 1 0,i i i i ik p kβ μ ρ β− − + ≤  we find that:  

( ) ( )

( ) ( )( )( )

2 2

2   
,

, 1 4 2 3 0

i i i i

j j ii i j

i k i i i i i i i
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p p p
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≠

∂ ∂
+

∂ ∂ ∂

= − − − − + ≥


 (25) 

Then  

( )
3

2 2 1i i
i i

p μ
β ρ

> −
−

 (26) 

Consequently, Nash equilibrium price is unique if the 
following equation is satisfied.  

( )
3

2 2 1i i
i i

p μ
β ρ

> −
−

 (27) 

 
 
 

Concretely, we use Algorithm 3 as an iterative method to 
compute the optimal price for each cloud provider in a 
duopoly market. Note that the convergence to Nash or 
approximate Nash equilibrium is not likely to be correct in 
some practical situation. 

6 Numerical simulation and results 
In this section, we provide a proof-of-concept of the 
proposed model through some numerical simulation. The 
main objective of study is to prove that game theory models 
may be used as a tool to create a fair and effective price 
strategy in cloud markets. More importantly, we examine 
the impact of users’ preferences on pricing competition. 
Table 2 represents the most commonly used parameters in 
the case of duopoly. 

Table 2 Parameters used in the numerical simulations 

n k p1 = p2 λ1 λ2 μ1 μ2 η1 η2 β 
2 100 [1:1000] 30 23 6.2 11.95 10 12 1 

6.1 Equilibrium state of the cloud market 
In this section, we conduct numerical simulation of the 
proposed game-theoretic model. Specifically, we compute 
the best response strategies in a market composed of two 
cloud providers, as shown in Figure 4. 

Figure 4 Nash equilibrium points of a 2-player game (see online 
version for colours) 

 

We then draw two curves where we identify the intersection 
point through Algorithm 2. This procedure is used to 
determine the best response, which produces the most 
favourable outcome for both cloud providers. Interestingly, 
we notice that there exists an intersection between the curve 
of vector BR1 and that of BR2. Therefore, the experimental 
result proves the existence and the uniqueness of the  
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Nash equilibrium in the case of duopoly where there are  
just two cloud providers for a price competition game.  
In the same vein, we show that the best-response  
algorithm can be iterated to find the corresponding Nash 
equilibrium. The simulation results prove the convergence 
properties of the proposed iterative best-response algorithm 
at the equilibrium prices. This point satisfies the equation 

( ) ( )1 2 2 1 ,BR p BR p=  as illustrated in Figure 5. In this case, 
the pricing policy for each cloud provider is determined by 
contrasting its best response function with the other 
provider’s strategy.  

More importantly, the best dynamic response algorithm 
converges to a unique Nash equilibrium within a small 
number of iterations. Such equilibrium gives the best payoff 
in response to a given action by an opponent. In other 
words, this price strategy allows cloud providers to find the 
most profitable combination that not only satisfies the needs 
of the customers but also maximises the cloud provider’s 
expected payoff. 

Figure 5 Convergence to the Nash equilibrium (see online 
version for colours) 

 

6.2 Impact of the cost per unit of a service on the 
equilibrium price  

In this study, we consider the pricing model in which a user 
pays a static price for a used unit, often per hour, GB, etc.  
In the subscription-based pricing model, service quality and 
customer satisfaction are the most important criteria to 
consider when opting for a reputable cloud provider. 
Although low cost can contribute to attract more customers, 
it is more expensive and difficult to keep existing and loyal 
clients, especially regarding the preferences for the new 
clients. Therefore, the pricing scheme is a critical factor for 
organisations offering remote services and hence has a 
significant impact on Nash equilibrium price, as illustrated 
in Figure 6.  

Accordingly, the best response increases when the cost 
per unit of a cloud service increases. This implies that cloud 
providers can increase their profit margins if they can raise  
 
 

the prices of delivered services. In a highly competitive 
environment, excessive pricing maximises short-term profit 
but will result in a loss of customers’ confidence. Thus, the 
cloud provider will select their optimal price to maintain 
equilibrium between their expectations and those of the 
clients. Consequently, engaging in an inappropriate pricing 
strategy cannot last for long, as competitors soon launch 
rival services, which put pressure on the adopted pricing 
policy, as shown in Figure 7. 

Figure 6 Best response with respect to the cost per unit of a 
service (see online version for colours) 

 

Figure 7 Price vs. demand on cloud market (see online version 
for colours) 

 

6.3 Impact of the user’s price sensitivity on the 
equilibrium price 

The user’s price sensitivity known also as price response 
coefficient refers to the degree of importance that a user 
places on a service price. In fact, the user’s sensitivity to 
price has a significant impact on user’s choice. In this part, 
we focus on the influence of the user’s price sensitivity or 
the user’s price reaction to the cloud revenue in the cloud 
market. From Figure 8, it appears that the best response for 
the price strategy is influenced by the user’s price sensitivity  
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of each service offered by the cloud provider. More 
specifically, we notice that the predictions for cloud 
revenues increase greatly in markets characterised by 
consumers with a low level of price sensitivity (close to 0). 

In the same line, we analyse the impact of operating 
costs on the overall cloud profitability. To this aim, we use 
different functions to calculate the operating costs,  
among them linear and exponential functions. As shown in 
Figure 9, markets in which customers have higher price 
sensitivity (close to 1) usually have a low profit margin 
compared to other markets. Certainly, the less sensitive 
users are to the price, the higher the providers’ revenue is. 

In light of this fact, the rational providers are strongly 
encouraged to reduce the cost of delivered services to attract 
more consumers. For example, Figure 10 indicates that 
cloud providers that opt for a low-cost price policy will 
undoubtedly attract more users. Unlike the case of perfect 
competition, the higher prices of cloud services can cause a 
decrease in demand. 

Figure 8 Impact of user’s price sensitivity on best-response  
(see online version for colours) 

 

Figure 9 Effect of user’s price sensitivity on expected profit  
with different operating costs functions (a = 10, b = 5, 
c = 0.7) (see online version for colours) 

 
 
 
 

Figure 10 Demand vs. user’s price sensitivity (see online version 
for colours) 

 

6.4 Impact of users’ preferences on the equilibrium 
pricing structure 

We also analyse the impact of the users’ preferences on the 
competition among cloud providers, especially in the 
revenue growth. In general, there are two possibilities: 
either a fixed or variable user’s preferences, as shown in 
Figure 11. 

From Figure 11, one can clearly see that there is a  
highly significant negative correlation between profit  
and users’ preferences. In this sense, the profit was 
negatively impacted by fixed preferences, whereas an 
increase in the users’ preferences leads to much higher 
profits for all cloud providers. Moreover, from Figure 12  
we can see that high demand for ubiquitous cloud  
services is mainly due to an increased in customers’ 
preferences. Subsequently, users are more willing to 
subscribe to cloud services even after the price has 
considerably increased. 

Figure 11 Impact of user’s preference on best response  
(see online version for colours) 
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Figure 12 Demand vs. preference in cloud market (see online 
version for colours) 

 

7 Conclusions 
This study has dealt with the problem of price competition 
in a duopoly cloud market. In particular, we have focused 
on the non-cooperative game model to find the optimal 
pricing strategy that attracts more users and maximises 
profit margins as well. In this respect, we rely on a game 
theory model to analyse the users’ choice behaviour and 
their impact on the strategic decisions among the cloud 
providers. The proposed model, when implemented 
properly, yields to the existence and the uniqueness of Nash 
equilibrium. Thus, the proposed model can be implemented 
as a useful and reliable tool to ensure a trade-off between 
profit and customers’ satisfactions. More importantly, we 
show that the convergence to Nash equilibrium can be 
found quickly in the case of a duopoly cloud market. 
Furthermore, extensive research that has been under taken 
in the theoretical issues underpinning the proposed models 
and its practical application to determine the most effective 
pricing strategy for the cloud market. This study 
demonstrates the positive impact of the users’ preference 
and the price sensitivity on the cost of remote services as 
well as the profitability of cloud providers. 

In the future work, we plan to use a number of factors 
that contribute to the brand and reputation of the cloud 
provider. In particular, we intend to use the QoS and data 
security to develop a fair and effective pricing strategy for 
the cloud market to meet both customers and cloud 
providers’ needs. 
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