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Abstract: In the last decades, many studies have emerged with different approaches in the field 
of earthquake prediction. Statistical and machine learning approaches have been used. However, 
these contributions remain immature. Some of them have not led to a successful prediction. 
Others have not been able to predict earthquakes so efficiently. Consequently, research into more 
relevant methods appropriates to this field will be important, as it would improve accuracy, 
performance, and dynamicity. This paper suggests applying the well-known deep learning 
algorithm long short-term memory to predict earthquakes in Moroccan regions. The features used 
in the prediction takes the most influencing and correlated datasets, it calculates an appropriate 
time feature that is simpler and more precise. The optimal hyperparameters values of our models 
are retrieved by the grid search technique. The performance of our model is compared with deep 
neural networks. The final results demonstrate that our model is more effective. 
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1 Introduction 

Natural disasters are sudden events, resulting from the 
natural process of the earth like floods, hurricanes, 
tornadoes, volcanic eruptions, earthquakes, tsunamis, and 
other processes. Earthquakes may be the cause of the most 
devastating damages ever seen on earth; they can destroy a 
city or even spread their damage over a whole region within 
seconds causing loss of lives and properties, not to mention 
their social, economic and environmental impact (Špičák 
and Vaněk, 2016). To mitigate the underlying risks, 
scientists have tested multiple approaches applied to  
highest seismic regions in the world such as Japan, 
California, Greece, China, etc., e.g., in 1975 scientists have 
successfully forecasted a strong earthquake, in Haicheng, 
China, using geoelectrical measurements. As mentioned in 
Wang et al. (2006), the prediction in Haicheng was a blend 
of confusion, but it was the first successful prediction. 
However, one year later, the scientists failed to predict the 
Tangshan earthquake, and the consequences were dramatic. 

Earthquake prediction is certainly a worthwhile matter. 
If it gets as efficient as we hope, it can help to preserve 
thousands of lives and saving great amounts of money 
necessary for reconstruction. Accordingly, it is clearly 
recommended to apply the most effective models and tools 
to solve this problem. Therefore, for this purpose, seismic 
historical data are used, in order to extract their nature and 
characteristics. Besides, seismologists have used multiples 
approaches, for instance geophysical, mathematical, 
statistical and computational models. However, not all of 
their predictions have had really an accurate result. 
Sometimes it was due to the complex calculations, and 
sometimes it was because of failing to analyse the huge 
recorded seismic data. Other recent research contributions 
have adopted machine learning and deep learning 
techniques to predict an earthquake. However, earthquake 
prediction that focuses on empirical analysis due to the 
nature of the problem it addresses, has not yet led to a 
successful prediction of an earthquake and it hence, remains 
an immature science (Hayakawa, 2015). Failing in 
predicting correct results can lead to a dilemma. On one 
hand, false alarms with no quakes taking place may drive 
the society to a panic and economic disruption, on the other 
hand, not giving a warning at the appropriate time, to a 
major earthquake that does occur, might guide to great 
losses of lives and economic destructions. Consequently, 
research into more relevant methods appropriates and 
adapted to this field will be important as it would improve 
accuracy, performance and dynamicity in terms of real-time 
processing.  

Artificial neural networks and deep learning are  
widely applied to hard-learned and complex datasets. 
Hence, many works tried artificial neural networks and  
deep learning because of their randomness nature and hyper 
parametrisation quality to solve the earthquake prediction. 
Not all of the works were typically compelling especially in 
terms of predicting all the important characteristics of the 
future earthquakes.  

Our work will fill the full meaning of the spatiotemporal 
earthquakes prediction by giving the four parameters as 
outputs: Magnitude, location, time, and accuracy of the 
prediction. The historical data we use belongs to the 
Moroccan regions given by the geophysical institute of 
CNRST. 

In this research paper, we build a model based on LSTM 
a deep learning algorithm, and a useful method for time 
series analysis and sequence data. The dataset representation 
used in the prediction is enhanced by calculating a simple 
feature that presents the date and time of events perfectly, 
especially in a very simple way. Our model gives 
performant and effective results because we select the best 
hyper parametrisation for it, using the grid search technique. 
And, to evaluate and compare the performance of our model 
we apply the deep neural networks (DNN). 

The remainder of this paper is organised in four 
sections. Section 2 gives an overview of earthquake 
prediction and classifies the techniques used in this field. 
Section 3 presents the dataset that is typically used in 
literature and it describes the architecture of the LSTM 
algorithm. Section 4 explains the usefulness of our data and 
model representation. Section 5 is a comparative synthesis 
that discusses the relevance and performance of our 
approach. Finally, Section 6 concludes the objective of our 
work.  

2 Earthquake prediction: overview and 
techniques classification  

Earthquake prediction, precisely the spatiotemporal 
magnitude prediction, is a branch of the seismology science. 
The aim of this branch is to help the authorities to focus 
their efforts for reducing the socioeconomic damages and 
losses of seismic events that would occur in the future. In 
practice, its purpose is to provide four important elements 
(Allen, 1976): 

• a specific magnitude range 

• a specific span of time 

• a specific location or area 

• a specific probability of occurrence that determines the 
performance of prediction. 

Earthquake prediction constitutes in fact, a sensible research 
field because it has a social and economic impact. Bad 
predictions may lead to huge damages and fatal injuries.  
For this reason, many research contributions have been 
performed trying to find more accurate results. These 
contributions have various specific objectives in terms of 
the time range of the performed prediction and the use 
context which refers to the magnitude of the predicted 
earthquake. According to the time range prediction, three 
types of prediction can be distinguished: long term 
prediction (10 to 100 years time scale), intermediate-term 
prediction (1 to 10 years time scale), and short-term 
prediction (up to one-year time scale). We note that five-
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years seismicity models were elaborated for a magnitude 
greater than or equal to 5.0 (Kagan et al., 2007; Ebel et al., 
2007). Similarly, a smoothed-seismicity model constructed 
on small earthquakes for mapping large ones was proposed 
in Helmstetter et al. (2006). Besides, two one-day forecast 
methods for earthquakes larger than or equal to 4.0 were 
presented in Ebel et al. (2007). In Rhoades (2007), they 
propose a method for long-range forecasting based on 
preceding minor earthquakes for forecasting large events. 

As mentioned above, many research contributions have 
been proposed in the earthquake prediction field to improve 
the quality of results. The proposed approaches experiment 
different techniques trying to achieve this objective and they 
can be classified into two main categories: probabilistic and 
statistical models-based approaches and machine learning 
based approaches. 

The probabilistic and statistical models-based 
approaches perceive the earthquake generation as a 
stochastic process and hence, are founded on analysing the 
seismicity distribution and using statistical methods. Many 
works from this category are proposed by the regional 
earthquake likelihood model (RELM) working group 
formed in 2000 to refine the seismic hazard modelling in 
California and highlight how earthquake occurrence can be 
physically and statistically characterised. A time-
independent model considering that the probability of the 
earthquake occurrence follows a Poisson distribution was 
proposed in Petersen et al. (2007). A probabilistic method 
using foreshock/aftershock statistics for 24-hours forecast 
was presented in Gerstenberger et al. (2007). Another 
probabilistic model was established in Shen et al. (2007) as 
intermediate to long-time forecast. To participate to RELM 
program, authors in Bird et al. (2007) proposed simple 
methods for estimating long-term average seismicity of any 
region, based on a local kinematic model of surface 
velocities and an existing global calibration of plate-
boundary seismicity. In addition, to match with the vision of 
RELM project, testable earthquake potential maps based on 
geodesy, geology, historical seismicity and computer 
simulations of earthquakes were proposed in Ward (2007). 
A stochastic model called epidemic rate strain (ERS) model, 
was also proposed in Console et al. (2007). This model 
allows the computation of the likelihood of a seismic 
catalogue and reflects at least to some extent the physics of 
earthquake processes. It merges the classical concept of a 
purely stochastic model called epidemic type aftershock 
sequence (ETAS) and the RateState theory for the 
seismicity rate. Many other contributions (Baykara et al., 
2005; Yalım et al., 2007; Erees et al., 2007; Zmazek et al., 
2003; Şen, 1998; Şen and Al-Suba’i, 2001) are founded on 
mathematical models and statistical calculations, such as 
regression calculations for analysing the characteristics and 
the risk of the earthquake’s occurrences. 

On the other hand, the machine learning-based 
approaches use machine learning methods as recently 
prominent techniques for automatic pattern recognition from 
the time series data. They experiment with various learning 
methods based on learning from training data like Artificial 

Neural Networks and Support Vector Machines. Many 
research contributions from this category have been recently 
proposed. An Artificial Neural Networks based model was 
developed in Külahci et al. (2009) to study the relationship 
between radon and earthquakes. Panakkat and Adeli (2009) 
proposed a new recurrent neural networks (RNN) model to 
predict earthquake time and location using a vector of eight 
seismicity indicators as input. To give a better estimation of 
radon variations, Negarestani et al. (2002) suggested layered 
neural networks analyse the relationship between radon 
concentration and environmental parameters for earthquake 
prediction in Thailand. In Moustra et al. (2011), authors 
developed three variations of Neural Networks models 
analysing the seismic electrical signals (SES) recorded in 
Greece. The first model which is the basic one has only one 
output which is the magnitude of the predicted impending 
earthquakes. The second one considers another extra input 
which is the average magnitude for the 30 previous days and 
gives the magnitude of predicted upcoming earthquakes. 
Finally, the third model is the same as the basic one but it 
predicts in addition to the magnitude, the time lag between 
the date on which SES were recorded and the date of the 
impending major earthquake.  

In Asim et al. (2018a), authors tried to consider the 
maximum of information on seismic activity by calculating 
seismic indicators in different regions. After that, they apply 
the genetic programming and Adaboost (GP- Adaboost) as 
an ensemble method to predict earthquakes of magnitude 
5.0 and above. The paper (Asim et al., 2018b) predicts 
earthquakes of three different regions using seismic features 
of geophysical and seismological concepts. Its authors 
construct a support vector machine regressor combined by a 
hybrid neural network merged by three different ANNs, the 
final model is applied to their data.  

Additionally, other contributions (Asencio–Cortés et al., 
2017, 2018; Buscema et al., 2015) use different machine 
learning classifiers like Naive Bayes, Support Vector 
Machines and Random Forest for earthquake prediction. For 
instance, Five classifiers were used in Asencio–Cortés et al., 
(2018) to predict the maximum earthquake magnitude in the 
upcoming seven days in California.  

The ability of deep learning to discover complex 
patterns in data conduct scientists to make its applications 
on earthquake prediction, where they benefit from the fact 
that no feature extraction is required (Mignan and 
Broccardo, 2019). 

For instance, in Li and Liu (2016) an improved variant 
of particle swarm optimisation (PSO) was applied combined 
with backpropagation neural networks to predict 
earthquakes. In Mahmoudi et al. (2016), they develop 128 
different MLP networks to find the best architecture of the 
magnitude earthquake prediction model. The work in 
Narayanakumar and Raja (2016) proposes a three-layer 
feed-forward BP NN to predict earthquakes in the region  
of Himalaya. The input datasets used are the seismic 
indicators and historical data. An earthquake location and 
time prediction of moderate to large earthquakes using 
seismic indicators and RNNs is presented in Panakkat and 
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Adeli (2009), it considers two cases of studies: location 
decomposition and time decomposition. In Parameswaran  
et al. (2020), they have implemented the LSTM network 
using AdaGrad optimiser to predict the coming earthquakes. 
Their dataset considers a whole area instead of using 
subregions. The model is a two-dimensional LSTM that 
uses a normalised input dataset. The results show that 
training the LSTM AdaGrad is more accurate using the 
LSTM only. 

3 Earthquake prediction: method and datasets 
Earthquake prediction aims generally to analyse various 
seismic data to forecast earthquakes. This context matches 
well with the deep learning and machine learning 
objectives, which considers learning problem as a problem 
of learning from experience concerning some tasks and 
performance measures. For this reason, more and more 
recent works tend to adopt machine learning and deep 
learning techniques as prominent techniques that could lead 
to emerging models for earthquake prediction from large 
recorded datasets. This section focuses on this category of 
work. It is divided into three subsections which respectively 
present the earthquake prediction process, the dataset 
representation, and the LSTM model architecture that we 
use in this work. 

3.1 Process for earthquake prediction 
In the field of machine learning and deep learning based 
earthquake prediction, the adopted prediction process 
usually includes five steps as described below: 

• Data acquisition: This step consists in collecting 
important and huge data of historical earthquakes  
which can lead to achieving the targeted objectives.  
The dataset we use in this work is recorded and 
provided by the National Geophysics Institute 
(CNRST) from 1900 to 2019. It belongs to the 
Moroccan regions and it contains 32396 seismic events. 

• Pre-processing: It aims to clean the collected data.  
In this step, it is important to remove noises and 
eliminate or transform all non-significant details, 
remove redundancy, eliminate details that do not affect 
the prediction, usually delete incomplete data and 
normalise data having a large size.  

• In this step, we delete the redundancy and remove the 
negative values of magnitudes from our datasets since 
they present not felt events. The negative values in our 
datasets are outliers that skew the training process of 
our model and lead to bad results. 

• Feature extraction and generation: This step consists in 
extracting the relevant seismic characteristics from the 
data. The relevance of selected information is estimated 
based to its ability to affect the prediction. In this step, 
we replace the time attributes with the one simple and 

appropriate time parameter, which presents the number 
of seconds between seismic events. 

• Error metric definition: In this step, it is important to 
select the metric most appropriate for determining the 
best set of parameters. In this work, the used metrics 
are the mean squared error, the mean absolute error, 
and accuracy. 

• Processing: This is the main step that consists in 
training the adopted model on the dataset and 
evaluating and comparing the predicted results with the 
measured values based on the defined error metrics. 
Before that, we normalise the final dataset using the 
Min-Max scaler which transforms datasets to an exact 
same scale, in a range between 0 and 1. 

3.2 Dataset representation 
In the literature, earthquake prediction is based on  
analysing seismic features and different anomalies, which 
have reliable relationship to earthquakes. These anomalies 
constitute patterns of occurrences of seismic events during a 
time period or during full/new moon periods. They refer 
generally to strange or irregular animal behaviours, soil gas 
and liquid movements and concentrations before the 
earthquake formation, physical characteristics of rocks, 
electrical signals, thermal and electromagnetic anomalies, 
water level, unusual weather and atypical cloud. 

With regard to the works (Asencio–Cortés et al., 2018; 
Külahci et al., 2009; Moustra et al., 2011; Alarifi et al., 
2012; Reyes et al., 2013), we have identified a set of main 
seismic features and anomalies indicators used as datasets to 
predict the earthquake magnitudes using machine learning 
methods. These features and indicators are as follows: 

• Magnitude distribution: It is the distribution of 
historical magnitudes retrieved from the recorded data. 
It constitutes the most important seismic feature 
because it represents the fluctuation of magnitude 
(Alarifi et al., 2012). In addition, this information gives 
an overview of the rate of earthquakes in a specific 
region. 

• Source depth: It is the depth at which an earthquake 
occurs. This earthquake feature shows its classification 
and determines where the most seismic events are 
concentrated. 

• Earthquake location: It determines the locations where 
the seismic events occurred. This feature is practically 
represented by the geographic coordinate’s longitude 
and latitude. 

• Date and time: They are usually represented in the 
recorded data by the year, month, day and time.  

• Number of earthquakes: It refers to the total number of 
earthquakes in any given region and time period. This 
indicator is calculated using Gutenberg-Richter’s law 
which represents the relationship between the  
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magnitudes and the total number of earthquakes. In the 
literature, Richter (2018) has noted that the number of 
shocks decreases very rapidly for the higher 
magnitudes. In the later studies, Gutenberg and Richter 
(1941) have suggested an exponential distribution for 
the number of earthquakes vs. the magnitude.  
Again, Gutenberg and Richter (1944) have transformed 
this law into a linear law expressing this relation  
for the magnitude frequency distribution as illustrated 
in equation (1). N(M) is the number of events  
with magnitude larger or equal to M, a is the seismic 
activity and b known as b-value is a size distribution 
factor. 

log10 N(M) = a – bM (1) 

• b-value: The b-value is a feature that reflects the 
physical characteristics of the area under analysis  
(Lee and Yang, 2006). It constitutes a very important 
feature since it reflects the geophysical properties of 
rocks and fluid in a specific region. In Gibowicz (1974) 
and Wiemer et al., (2002), authors show that the b-
value increases after large earthquakes in New Zealand 
and decreases before the next aftershocks. They 
conclude that the variation of the b-value over time 
refers to aftershocks and that this value tends to 
decrease when many earthquakes occur in a local area 
during a short period of time. 

• Aftershocks rate: It refers to the rate of aftershocks in 
the elapsed time t since the mainshock. This indicator is 
calculated using Omori-Utsu’s law. We note that 
Omori’s law determines the rate of aftershocks  
with time which falls-off very rapidly by time after  
the mainshock (Utsu, 1999). It is calculated according 
to equation (2). N(t) is the rate of aftershocks in the 
elapsed time t since the mainshock, K is the amplitude 
and c is the time offset parameter that is typically much 
less than one day. Omori-Utsu law is the modified 
version of Omori’s proposed in 1967 by Utsu (1961).  
As illustrated in equation (3), it uses the p-value which 
is the fitness parameter that modifies the decay rate and 
typically falls in the range 0.8–1.2. 

N(t) = K/(c + t) (2) 

N(t) = K/(c + t)p (3) 

• Average difference in magnitude: It refers to the 
average difference in magnitude between a mainshock 
and its largest aftershock. Bath’s law states that it is 
constant and typically equals to 1.1–1.2 Mw regardless 
of the mainshock magnitude (Båth, 1965). 

• Radon concentration: It refers to soil radon content. 
Radon is a radioactive noble gas. Evaluating its content 
aims to detect changes in its level, this would be useful 
as a potential earthquake predictor. 

• Electrical signals: They are geoelectric voltages 
referring to low frequency electric signals. Known as 
SES in VAN method of physics professors Panayiotis 

Varotsos, Kessar Alexopoulos and Konstantine 
Nomicos (VAN), these signals have been recommended 
in 1981 as indicators for predicting earthquakes of 
magnitude larger than 2.8 within all of Greece up to 
seven hours beforehand. VAN method (Varotsos et al., 
1986, 1988) is an experimental method of earthquake 
prediction. It is based on observing and assessing SES 
that occur several hours to days before the earthquake 
which can be used as warning signs. This method has 
successfully predicted about 60% of Greek earthquakes 
of magnitude larger than 5.3 on the Richter scale 
(Uyeda, 1997). 

3.3 LSTM architecture 
In earthquake prediction research field, the most  
used methods are based on neural networks and DNN 
models. 

ANN is a mathematical model for information 
processing, inspired by the way that biological nervous 
systems process the information. ANN is in practice,  
a network of nodes, called neurons, connected by directed 
links. The methods founded on DNN and ANN are in fact, 
based on training a multi-layer ANN where each layer 
learns to transform its input data into a more abstract  
and composite representation. These methods are founded 
on a layered-based iterative procedure using non-linear 
transformations of data for pattern recognition. They 
explore an ANN with multiple hidden layers between input 
and output layers. All methods proposed in Alarifi et al. 
(2012), Ozerdem et al. (2006), Galkina and Grafeeva 
(2019), Su and Zhu (2009) and Bhatia et al. (2018) used 
feed-forward ANNs. These ANNs are the most powerful 
and most popular neural networks for nonlinear regression 
Asencio–Cortés et al. (2018). A Feed-forward network 
sends the information between neurons in only one direction 
forward, from the input neurons, through the hidden layers 
to the output neurons. The DL method used in Bengio et al. 
(2014) explores a multi-layer feed-forward ANN that is 
trained with stochastic gradient descent using back-
propagation learning algorithm which is useful for feed-
forward networks. It adjusts the weights of each unit in such 
a way that the error between the desired output and the 
actual output is reduced (Rumelhart et al., 1986). Besides, 
DL enables performing supervised, semi-supervised or 
unsupervised learning. However, DNNs, like ANNs, present 
some limits in terms of overfitting and computation time. 
They are likely to overfit because of the added layers of 
abstraction, which allow modelling rare dependencies in the 
training data. 

To deal with these problems, deep learning comes with 
strong algorithms, especially for time series analysis. Deep 
learning methods and approaches do not need feature 
engineering and extraction, and it gives effective results 
even with unstructured data. Deep learning is usually known 
by the high-quality results in complex predictions and 
pattern recognition.  

Earthquakes datasets are time-series data and difficult to 
forecast. To predict them reliably, it is crucial to try one of 
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the most powerful algorithms dedicated to sequence data 
called LSTM. 

LSTM is a RNN proposed by Hochreiter and 
Schmidhuber (1997). RNN are a type of artificial neural 
network enhanced by their memory state. RNNs are 
applicable in time series data because such data are usually 
dependent on each other. However, classical RNNs do not 
present the best solution. They suffer from vanishing and 
exploding gradient and become untrainable.  

LSTM resolves the problems of RNNs, it contains three 
important components called gates: input gate, forget gate,  
output gate; and two memory cells: hidden state and internal 
state. 

These steps explain the functioning of LSTMs (see 
equations (4)–(8): 

First, the input data is initially squashed by the Tanh 
function to make them very small values and present them 
in a non-linear manner. 

Second, the squashed data pass to the input gate. The 
latter takes the relevant information and filters the no 
required elements by multiplying them with a sigmoid 
function.  

Third, the internal state or the memory of the current 
state takes the information stored in the previous state and 
adds it to the input data. It uses an addition operation instead 
of multiplication to avoid the vanishing problem.  

After that, the recurrence of states is enforced by a 
forget gate. This one decides which state elements should be 
memorised or forgotten using a sigmoid function. 

Finally, a Tanh function squashes the outputs then the 
forget gate decides which elements should be stored and set 
as outputs of the current cell state. 

it = σ(Wi ⋅ [ht–1, xt] + bi) (4) 

čt = tan h(Wc[ht–1, xt] + bc) (5) 

ft = σ(Wf ⋅ [ht–1, xt] + bf) (6) 

ot = σ(Wo[ht–1, xt] + bo) (7) 

ct = ft * ct–1 + it * čt (8) 

ht = ot * tan h(ct) (9) 

where it, čt, ft, ot, ct, ht are the input gate, cell input 
activation, forget gate, output gate, cell state, and the hidden 
state respectively. Wi, Wc, Wf and Wo are their weight 
matrices respectively. bi, bc, bf, and bo are the biases.  
Xt is the input, ht–1 is the last hidden state, ht is the internal 
state. σ is the sigmoid function. 

4 Earthquake prediction approach using LSTM 
algorithm and an enhanced time feature 

This section focuses on explaining our proposed earthquake 
prediction model. Initially, we start by presenting and 
proving the importance of using our enhanced data 
representation, and then we define the architecture of our 
LSTM-based model. 

4.1 Data and time feature representation 
Data representation is an essential step in machine learning 
and deep learning, which could ease learning complex tasks 
by the model. Simplifying and reducing the dimensionality 
of data is very crucial, especially when learning non-
correlated data. In the case of earthquake prediction 
multiple works tried to compute and generate the 
geophysical indicators (Section 3), these indicators were 
calculated from the basic dataset like magnitudes, 
foreshocks, and aftershocks. This way is computationally 
expensive and takes the same trends and patterns of the 
basic dataset by presenting them in another structure. 

Our work is based on the DL algorithm LSTM, a strong 
model that is capable to learn the patterns from the basic 
features without generating others. In the work (Ozerdem  
et al., 2006) authors demonstrate that ANN and deep 
learning do not need a feature generation process because 
they are skilled in learning and extracting the insights from 
datasets by themselves. Where they evaluate the 
performance of DL models with feature generation and 
without it, and finally they found that DL does not need 
feature engineering.  

For these reasons, our model focuses on training the 
main and important dataset features which are: the 
magnitude distribution, source depth, earthquake location 
(longitude and latitude), and an inferred time feature.  

In the field of machine learning-based prediction, the 
date and time are hard to learn. On one hand, they could be 
presented in split attributes (year, month, day, hour, minute, 
and second) which expand the dimensionality of the model. 
On the other hand, they could be composed where they do 
not present any correlation with the other features. 

To solve these problems, some works use a sequential 
number to save the chronology of the seismic events and 
ignore the date and time attributes. In contrast, the date and 
time parameters are very important in earthquake prediction 
since they are time-series data. The year and month or even 
the time could be related to the cause of a seismic event. 
Also, it is possible to take just the year since it is usually the 
most correlated with magnitude distribution.  

Table 1 Correlation coefficients of different date and time 
representations (SEQUENTIAL number, year, 
month, day, hour, minute, second and the inferred 
time that we propose) with magnitude distribution 

Date and time representation Correlation 
with 
magnitude 
distribution Seq Year Month Day Hour Min Sec

Inferred 
time 

Coefficients 59% 55.46% 0% 0% 0% 0% 0% 56% 

In this regard, we suggest calculating another simpler and 
expressive feature, which is inferred from date and time and 
saves the exact information without wasting any parameter 
of them. This time feature refers to the number of elapsed 
seconds from the first seismic event. To make things easier,  
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this feature transforms the date and time components to one 
parameter that counts the number of seconds to each event. 
Giving such exact and clear information will enhance and 
gain our model a great training quality, especially when it is 
correlated with the magnitude distribution (see Table 1). 

4.2 Method and hyperparameters identification 
LSTM is one of the effective methods of RNNs. RNNs are 
deep learning algorithms, adapted to sequence data, they are 
extremely expressive since they are capable to learn 
complex vector-to-vector mappings.  

Our approach is based on the application of LSTM 
algorithm using an enhanced data representation. This 
family of algorithms is known by its high parametrisation. 
The values of parameters defined when using an algorithm 
affect its behaviour in terms of error tolerance, number of 
iterations, variants, etc. The learning time and accuracy of 
the algorithm can sometimes depend greatly on the choice 
of appropriate parameters. Algorithms with large numbers 
of parameters require generally, more testing to find the 
right combination. For this reason, we apply the search grid: 
a hyperparameter optimisation technique, which allows  
us to test and compare the performance of several  
different combinations of parameters, to give the optimal 
parameterisation of our model. The grid search is typically 
computationally expensive, and we use it in this work since 
we cannot manually tune this number of parameters. 

The purpose of using the grid search technique  
in our approach is to find the best values for these 
hyperparameters: 

• The number of memory cells of the LSTM model. 

• The Batch-size that presents the number of samples that 
will be propagated in the network. 

• Epochs, the maximum number of iterations that the 
model needs to correctly learn. 

• An activation function that calculates the output of each 
node to determine the final output, the choice of the 
activation function is very crucial since it presents an 
important effect on the model’s ability to converge and 
on the convergence speed. The type of activation 
function depends on the nature of the problem and 
datasets. In our case, we use non-linear functions 
because the seismic activity is non-linear and complex. 

• A dropout rate to specify the probability of setting each 
unit to 0 at each update and that is the main attribute of 
the dropout function. The dropout function is used to 
drop out of the network some neurons, where it  
does not consider them during the training process. This 
function ignores the co-dependency between neurons 
and helps the model to avoid overfitting. 

• An Optimiser, the method used to update the values of 
weights and learning rates during the training phase to 
reduce the losses. There are several existing methods 
like SGD, Adagrad, Adadelta, and Adam. 

In Berhich et al. (2020), we built an LSTM model in two 
cases of studies with the same data of the Moroccan regions 
we use in this work. The first case gives the prediction of 
earthquakes using all datasets and the LSTM model. The 
second case uses two LSTM models with data 
decomposition. The decomposition aims to separate large 
earthquakes from small and medium earthquakes to 
generate two groups of datasets. The paper compares the 
two cases and demonstrates that earthquake prediction with 
data decomposition is more effective than using the whole 
dataset at one time. 

Figure 1 Flow chart of the proposed LSTM model 

 

Table 2 Best combination values of hyperparameters retrieved 
by the grid search technique when using the LSTM 
and multi layered NN models 

Models 
Hyper parameters LSTM Multi-layer NN 

Number of memory cells 75 50 
Batch size 128 128 
Epochs 100 100 
Activation function reLu reLu 
Dropout rate 0.05 0.05 
Optimiser Adamax Adam 
Loss function Mean squared error Mean squared error

The flowchart in Figure 1 illustrates our model clearly. At 
first, we start by normalising the datasets using the Min-
Max scaler. After that, the scaled data is split into 80% for 
training and 20% for the testing data. Then, the grid  
search technique will define the optimal combination of 
hyperparameters from a set of different values that we 
define before (see Table 2). Afterward, the model is trained 
using the best parameter values retrieved, till that it  
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converges to the minimum error using the best optimiser 
and loss function for error evaluation. Finally, the trained 
model is applied to testing data to evaluate its performance. 
The performance metrics we use for evaluation are mean 
absolute error, mean squared error, and accuracy.  

5 Evaluation and discussion 
Obtaining the most accurate answer possible is necessary 
for earthquake prediction. Claiming wrong results can lead 
to a big loss. In this perspective, we present in this section 
the results of our LSTM predictive model. The experiment 
results are illustrated in Table 3. 

Table 3 Spatiotemporal magnitude prediction experiment’s 
results of LSTM and multi-layer NN models, using 
the performance metrics accuracy, MAE and MSE, 
and the elapsed time during training process 

Models 
Performance metrics LSTM Multi-layer NN 

MAE 0.031 0.074 
MSE 0.0032 0.012 
Accuracy 99% 96% 
Elapsed time by seconds 654.40 98.910 

To evaluate the performance of our work we use the 
metrics: mean absolute error, mean squared error, and 
accuracy. 

One of the ill-posed problems of earthquake prediction 
is the difficulty of comparing the performances of the works 
in literature, because of the variety of studied regions, 
datasets, and performance metrics used by authors. For this 
reason, we are applying a multi-layer neural network (NN) 
on datasets to evaluate the performance of the proposed 
model. The hyperparameters of the multilayer NN are 
defined using the same grid search technique. We choose 
the multi-layer NN for evaluation because it is widely used 
in literature as it is mentioned in Section 2. 

According to the results (Table 3), we find that  
the LSTM model that we propose is outperforming the 
multi-layer NN using the three metrics, where the MAE is 
0.031 when using LSTM and 0.074 when using multi-layer 
NN, the MSE is 0.0032 when using LSTM and 0.012 when 
using multi-layer NN, and finally, the accuracy of LSTM 
model is more effective than multi-layer NN by 3%, but it is 
slower because it takes its time to converge to the minimum 
error. 

The models in Figure 2 illustrates the fitting curves of 
the model’s LSTM and multi-layer NN. The fitting is good 
in both models. No underfitting or overfitting is observed. 

As we can see, the approaches proposed in the literature 
for earthquake prediction, namely those based on machine 
learning and artificial neural networks, use different 
approaches based on various elements and indicators as a 
dataset. The success of some of them has been attained by 
chance. In 2011, the International Commission on 

Earthquake Forecasting for Civil Protection (ICEF) 
considered the search for useful precursors as unsuccessful. 
It concluded that the prediction capability claimed by VAN 
could not be validated (Jordan et al., 2011). In contrast, the 
geophysical indicators, namely, the number of earthquakes, 
the b-value, the aftershocks rate and the average difference 
in magnitude, have been recommended as input features for 
the machine learning models in Asencio–Cortés et al. 
(2018) and Asim et al. (2018a) since they allow achieving 
an important accuracy of prediction. These indicators are 
calculated from the principal features that we use in this 
work. That is why we do not need to generate them since 
the LSTM algorithms are capable to give such performant 
results without any feature extraction or generation. 
Besides, our enhanced time feature adds a great potential 
and quality of prediction, because of its simplicity, and the 
fact that it preserves the tendency of seismic activity in one 
soft parameter. 

Figure 2 Fitting curves of LSTM and multi-layer NN training 
process (see online version for colours) 

 

In brief, this work attains four important goals: 

• a reduced number of features 

• an enhanced and simplified feature that contains the 
trends of date and time in one information 

• a spatiotemporal magnitude prediction 

• the best and optimal combination values of 
hyperparameters are identified by the grid search 
technique. 

Finally, this improved earthquake prediction model is 
outperforming our previous LSTM model presented in 
Berhich et al. (2020) and it gives more performant and 
better results. 
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6 Conclusion 
In this paper, we suggest an enhanced approach for 
spatiotemporal earthquake magnitude prediction using  
the datasets of the Moroccan regions. Our approach applies 
an LSTM model on six features: the time, magnitude, 
source depth, longitude, and latitude. The time feature we 
propose is a simple and better transformation of date and 
time features, which could be complex and hard to learn.  
To identify the model’s hyperparameters we use the grid 
search technique, which gives the optimal combination of 
hyperparameter values. Our LSTM model is compared with 
a multilayer neural network model that we apply on the 
same dataset. The final results improve that our enhanced 
LSTM model provides effective forecasting and achieves 
favourable performance compared with others. 
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