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Abstract: Nickel-titanium superalloy has gained significant acceptance for 
engineering applications as orthotropic implants, orthodontic devices, 
automatic actuators, etc. Considering the unique properties of these alloys, such 
as high hardness, toughness, strain hardening, and development of strain-
induced martensite, micro-wire electro-discharge machining (µ-WEDM) 
process has been accepted as one of the main options for cutting intricate 
shapes of these alloys in micro-scale. This paper presents the results of a 
comprehensive study to address the material removal rate (MRR) and surface 
integrity of Ni55.8Ti shape memory superalloy (SMA) in the µ-WEDM 
process. The effects of discharge current, pulse on-time, pulse off-time, and 
servo voltage on the performance of this process, including MRR, white layer 
thickness, surface roughness, and micro-hardness of the machined surface, 
were investigated by multi-regression analysis using response surface 
methodology (RSM). The optimisation of input parameters based on the  
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gradient and the swarm optimisation algorithms were also conducted to 
maximise the MRR and minimise the white layer thickness, surface roughness, 
and micro-hardness of the machined samples. 

Keywords: Ni55.8Ti; µ-WEDM; Kerf; white layer; surface roughness; micro-
hardness. 
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1 Introduction 

The nickel-titanium shape memory superalloys (Nitinol SMAs) possess a lower stress 

shielding effect and much higher strain recovery than steel alloys, which make them a 

better choice as biomedical implants, and are more flexible and resistant to cyclic fatigue 

which are important for mechanical actuators (Wadood, 2016; Kalmar et al., 2019). 

However, machining of these alloys using conventional metal cutting techniques is very 

difficult because of their specific properties of high strength, high specific heat, and 

formation of strain-induced martensite that result in high tool wear and low integrity of 
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machined surfaces (Guo et al., 2013). These characteristics make the wire electrical 

discharge machining (WEDM) the most appropriate and widely accepted 

nonconventional machining technique of Nitinol superalloys (Sharma et al., 2017). 

However, to produce features in the micro-scale, the µ-WEDM process, which uses 

lower discharge energies and smaller wire-electrode diameter as compared with the 

WEDM process, has been introduced (Puri, 2017). The temperature developed during 

electrical discharges greatly influences the surface integrity characteristics of the Nitinol 

superalloys, including surface roughness (SR), micro-hardness (µH), and thickness of the 

re-solidified layer (called white later) (WLT) of the machined workpiece (Daneshmand et 

al., 2012). 

Most of the researches concerning the WEDM of Nitinol SMA relies on the study of 

the effects of process parameters on the performance of the WEDM process, with no to 

little reference to the µ-WEDM process (Manjaiah et al., 2015; Hsieh et al., 2009). 

Manjaiah et al. (2015) investigated the effects of WEDM parameters, including pulse on-

time, Ton (120‒130 µs), pulse off-time, Toff (48‒62 µs), and servo voltage, SV (20‒80 V) 

on MRR and SR of Ti50Ni50-xCux superalloys. They reported that arithmetic mean 

roughness (Ra) of 1.83 µm and cutting rate of 7.6 mm/min under optimum process 

parameters are achievable. The authors also showed the formation of TiO2 and NiTiO3 

phases on the samples because of the high temperature induced during WEDM. Hsieh et 

al. (2009) studied the effect of Ton (1‒5µs) on the hardness, SR, and composition of the 

machined surface of TiNiZr and TiNiCr SMAs in the WEDM process. They showed that 

the cutting rate (CR), Ra, and WLT increase with increasing Ton. The authors also 

reported the formation of metal oxides, including TiO2, TiNiO3, Cr2O3, and Cu2O in the 

recast layer resulted in the higher hardness of this layer as compared with that of the base 

alloy. The formation of Cu2O was ascribed to the deposition of Cu atoms from the brass 

wire on the surface of the workpiece. Soni et al. (2017) conducted experiments to 

evaluate the effects of Ton (105−128 μs), Toff (28−56 μs) and SV (20−60 V) on MRR and 

SR of Ti50Ni40Co10 SMA. They reported that MRR and SR both increased with increasing 

Ton and both decreased with increasing Toff. The authors found the minimum WLT at low 

Ton and high SV levels. 

Furthermore, optimisation techniques have been employed extensively to achieve the 

discharge parameters that result in maximum MRR and minimum tool wear and SR of 

the workpiece. In this regard, Upadhyay et al. (2019) investigated the rheological effects 

of magnetic fluid in the discharge gap of the electro-discharge process induced by the 

rotational magnetic field on the aluminium particles suspended in the dielectric fluid. The 

authors optimised the levels of Id, Ton, and discharge duty cycle to maximum the MRR 

while minimising the Ra of the workpiece. They reported that the repulsion of debris from 

the discharge gap was improved by the rotational effect of the magnetic field, increasing 

discharge efficiency and MRR. Agrawal and Kamble (2019) employed RSM central 

composite design (L20) to understand the effects of etching time, temperature, and 

concentration of ferric chloride etchant on the MRR and undercut in photochemical 

machining of SS-304 stainless steel. Sharma et al. (2017) conducted experiments based 

on RSM central composite rotatable design to identify the influence of WEDM process 

parameters, including Ton (105‒124 µs), Toff (25‒55 µs), SV (30‒80 V), and Id (11‒19 A) 

on the CR, dimensional shift (dsf) and mean surface roughness depth (Rz) of the Ni40Ti60 

SMA. 

The dsf was defined as the gap between the surface and the wire periphery. Rathi et al. 

(2019) investigated the influence of Ton (90‒110 µs), Toff (20‒30 µs), and Id (2‒6A) on 
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response variables of MRR and SR in the WEDM process of Ni55.8Ti SMA. They 

designed experiments based on Taguchi’s L9 orthogonal array and used Gray relation 

analysis (GRA) to obtain combined optimal WEDM parameters to maximise CR while 

minimising SR. The authors reported that Id was the most significant parameter 

influencing the MRR and SR. Magabe et al. (2019) conducted experiments based on 

Taguchi’s L16 technique to evaluate the effects of Ton (0.35‒1 µs), Toff (9‒24 µs), SV 

(20‒50V), and wire feed rate (3‒12 m/min) on MRR and SR of Ni55.8Ti SMA in WEDM 

process and employed the non-dominated sorting algorithm-II (NSGA-II) to obtain the 

optimal levels of these parameters. 

They showed that Ton was the most significant factor influencing the MRR and Rz, 

both of which increased with increasing Ton. They showed that the models developed 

using the NSGA-II algorithm were able to predict the MRR and Rz with maximum errors 

of 3.43 and 5.08 %, respectively. Chaudhari et al. (2019) used RSM based on Box-

Behnken design (BBD) technique to investigate the effects of Ton (35‒55 µs), Toff 

(10‒20 µs), and Id (2‒4A) on MRR, SR, and µH of Ni55.8Ti SMA in WEDM process. 

They optimised the process parameters using a heat transfer search (HTS) algorithm and 

validation based on retention of shape memory effect using results of differential 

scanning calorimetry (DSC) tests. The authors reported that the developed models based 

on the HTS algorithm were able to predict the response variables with errors of less than 

1.5%. 

As illustrated in the literature review, the most important input parameters of the 

WEDM process are Ton, Toff, Id, and SV and the major response variables include MRR, 

SR, and dimensional shift of the machined workpiece. Furthermore, the microscopic 

changes in the surface characteristics of nitinol SMA after the WEDM process due to 

induced recast layer, or white layer, on the machined surface are of crucial importance as 

these changes significantly affect the shape memory and elastic recovery characteristics 

of these alloys (Chaudhari et al., 2019). As the recast layer exhibits no shape memory 

effect, the effect of this layer is the depression of the shape memory characteristic of the 

base metal (Hsieh et al., 2009). Furthermore, the creation of metal oxides on this layer 

results in the higher hardness of the surface layer and a reduction in the fatigue strength 

and toughness of the workpiece. The formation of TiO2 in this layer results in the 

exhausting of Ti atoms on the surface and diffusion of residual Ni atoms to the sublayer 

and formation of Ni-rich regions. The overall effect of these phenomena would be a 

reduction in the elastic recovery and fracture toughness of the machined workpiece 

(Hsieh et al., 2009, Sharma et al., 2017). The creation of a white layer with a thickness of 

18 μm on Ni40Ti60 SMA in the WEDM process was also reported by Sharma et al. (2017). 

The authors showed that the formation of TiC and metal oxides in the white layer raised 

the hardness of the machined surface to 875 HV, several times greater than the hardness 

of the base material. Reduction in the shape recovery of Ni60Ti SMA with an increase in 

the bending strain as compared with that of as annealed alloy before machining due to the 

formation of metal oxides, such as NiO and Cu2O, in the recast layer and significant 

increase of surface hardness as compared with the base alloy in the WEDM process were 

also reported in the literature (LotfiNeyestanak and Daneshmand, 2013). 

Based on the literature review and to the best of our knowledge, there has been no 

specific report on the WEDM process of nitinol shape memory alloys on a micro-scale. 

Therefore, to fill this gap current study was aimed to investigate the performance of the 

µ-WEDM process in the machining of Ni55.8Ti SMA in terms of important machinability 

features, MRR, and surface integrity of the machined workpiece. The experiments were 
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designed based on L27 Taguchi orthogonal array to reduce the number of experiments. 

The surface integrity of the machined sample was determined based on the Ra and µH 

values and WLT induced on the machined surface. Mathematical models were generated 

for each response variable and the significance of the models and influencing factors 

were analysed by ANOVA. Electro Diffraction spectroscopy (EDS) of the machined 

surfaces was conducted to analyse the presence of oxygen or other elements in the 

machined surface layer. Also, the surface of a typical machined surface was tested using 

X-ray diffraction spectroscopy (XRD) for the formation of metal oxides in the white 

layer. Two algorithms, namely gradient algorithm (GA) and particle swarm optimisation 

(PSO) algorithm were used to determine the optimum levels of input parameters to obtain 

the best levels of response variables, maximising the MRR and minimising the WLT and 

Ra of the machined samples, individually and simultaneously. The models were validated 

by comparing the results of both algorithms for individual and combined responses. 

Therefore, the current study was aimed to investigate the surface integrity of Ni55.8Ti 

SMA in the µ-WEDM process using Taguchi’s L27 orthogonal array technique of RSM. 

Mathematical models were generated for each response variable and the significance of 

the models and influencing factors were analysed by the analysis of variance (ANOVA). 

The machined surfaces of samples were tested using X-ray diffraction spectroscopy 

(XRD) for the formation of metal oxides in the white layer. 

Two algorithms, namely gradient algorithm (GA) and PSO algorithm were used to 

determine the optimum levels of input parameters to obtain the maximum MRR 

minimum levels of WLT, SR, and µH. 

2 Experimental process, design, and optimisation 

2.1 Experimental procedure and equipment 

A sample of Ni55.8Ti SMA with the dimensions of 60 × 10 × 5 mm was prepared for the 

μ-WEDM experiments and 9 slots were cut under different cutting parameters as depicted 

in Figure 1. A high-precision Sodick AP250L wire electro-discharge machine, with a 

100 μm diameter brass wire as the tool and EDM fluid 108 MP-S as the dielectric liquid, 

was used to conduct the μ-WEDM experiments. 

Figure 1 The Ni55.8Ti SMA sample and cutting kerfs in μ-WEDM experiments (see online 
version for colours) 

 

 

Four parameters, namely pulse on-time (Ton), pulse off-time (Toff), servo voltage (SV), 

and discharge current (Id) were specified as the process parameters. The range of each 

parameter was determined from the preliminary experiments (Table 1). The MRR was 

determined as a function of the Kerf width (KW), the workpiece thickness (t), and the 
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cutting rate (CR) using equation (1) The KW was measured from microscopic images of 

the cutting kerf obtained using Leica DMi8 M/C/A invert light microscope Figure 2. An 

average of ten readings at different 10 spots along the cutting length of the sample was 

reported as the KW for each kerf. 

MRR KW t CR    (1) 

To conduct microscopic examinations of the cutting section to determine WLT, the 

samples went through a preparation procedure of mounting in epoxy, grinding using 

sandpapers, polishing and etching. For this purpose, grinding was performed on the 

samples with 800, 1000, and 2500 grade silicon carbide sandpapers. Polishing was 

performed using two suspension liquids of aluminium oxide (AI2O3) (average size 1 µ) 

and diamond (average size 0.3 µ) particles. The etching of the samples was performed on 

the cross-section of the machined surface in a solution composed of 10 ml HF, 20 ml 

HNO3 and 30 ml HO2 (Es-Souni et al., 2002). The scanning electron microscope was a 

Quanta 200f SEM system equipped with an electron dispersive spectroscopy (EDS) unit. 

X-ray diffraction analyses were conducted using a Philips XRD spectrometer with 

CuKα radiation. 

Table 1 μ-WEDM input parameters and their levels 

Parameter 

Level 

I II III 

Ton ( μs) 3.5 5 7.5 

Toff ( μs) 5 10 16 

Id (A) 0.6 6 11 

SV (V) 80 130 180 

Figure 2 Representation of cutting kerf in the μ-WEDM process: (a) schematic representation 
and (b) the microscopic image at machining parameters of Ton = 5 μs, Toff = 10 μs, 
Id = 11 A and SV = 80 V 

 

The surface roughness of the samples was measured using a precise confocal laser 

scanning microscopy, KEYENCE VK-X110 series, with a 50X magnification lens and a 

scanning rate of approximately 0.08 µm/s (Figure 3). The surface roughness of the 

samples was reported using arithmetic mean surface roughness (Ra) measured with a 

cutoff length of 0.8 µm. An average of surface roughness in four consecutive readings of 

each machined surface was reported as Ra. The micro-hardness measurements of the 
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machined surfaces were conducted on a ZWICK. ROELL ZHvµ micro-hardness tester 

using an indenter force of 1 kg applied in 10 s on the sample surface via a 136° pyramidal 

diamond indenter. 

Figure 3 Surface roughness measurement: (a) KEYENCE Vk-x100 confocal laser scanning 
microscopy and (b) surface topography of machined surface at Ton = 5 μs, Toff = 10 μs, 
Id = 11 A and SV = 80 V (see online version for colours) 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

 

2.2 Design of experiments and response surface methodology 

The design of experiments was conducted using the Taguchi orthogonal array (L27) 

technique. The experiments were repeated three times for each set of parameters and an 

average of measurements were reported as the response variables of the μ-WEDM 

process. The RSM based on the desirability function approach was applied to generate 

the regression models of the response variables with a confidence level of 95% using 

Minitab software. The ANOVA was performed to evaluate the adequacy of the 

regression model and the significance of each parameter on the response variables (Roy 

and Kumar, 2014). 

2.3 Optimisation analyses approach 

The gradient and the PSO algorithms were used to identify the optimal levels of input 

parameters to maximise the MRR and minimise the WLT, SR, and µH in µ-WEDM of 

Ni55.8Ti SMA. A comparison of the results of these algorithms was used to validate the 

accuracy of the models developed based on each algorithm. 

2.3.1 Gradient algorithm 

The GA was used to transform the individual or combined responses into desirability 

indices based on the following steps (Majumder et al., 2014). 

Step 1: The individual desirability index (yi) was calculated for each response variable 

according to the required state of the response, either to increase or decrease the response 

or to achieve a specific target. For the state of response to achieve the minimum,  

equation (2) was used. 
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where i is the predicted value, Si is the smallest acceptable value, and Hi is the highest 

acceptable value of the ith response, respectively. ri is the weight exponent. 

Step 2: The yi indices were combined according to equation (3) to achieve the global 

desirability index (D). To obtain the highest quality characteristics by selecting the 

optimal setting of μ-WEDM parameters, the D index should be maximised or in other 

words, the fitness function, Y defined by equation (4), should be minimised. 

 1 1
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1/

1 2* * *

n

j
n

j

w
ww w

nD y y y 


  (3) 

1

1
Y

D



 (4) 

where n is the total number of response parameters and wi is the individual weight of the 

jth response. 

2.3.2 Particle swarm optimisation (PSO) algorithm 

The PSO is a random arithmetic search and modulation method that relies on the 

movement and intelligence of swarms to find items while searching for specific targets 

within a specific search space (Al-Anzi and Allahverdi, 2007). The idea of the algorithm 

is based on the solutions provided by each of the swarms. Each of these solutions, termed 

as ‘particle’, searches space of its quest, looking for the optimal position to land. 

This particle has a memory of tracking and remembering the best position reached in 

the past. In PSO, there is a combination of the local experience (particle’s self-

experience) and the global experience (the experience of neighbouring particles) that 

provides the optimal solution within the search space over time (Júnior et al., 2018). 

In this study, three different processes of the PSO category, namely PSO-original 

(PSO-O), PSO-inertia weight (PSO-IW), and PSO-constriction factor (PSO-CF), were 

used based on the desirability model generated by the RSM to predict the optimum 

parameter levels to MRR, WLT, SR, and µH (Fourie and Groenwold, 2002). The steps 

used in the algorithm are shown in Figure 4. 

Assuming that the swarms search for a certain goal in a specific d-dimensional space, the 

position and velocity of the ith particle in this space could be represented by d-

dimensional position xi = (xi1, xi2, …, xid) and velocity vi = (vi1, vi2,…, vid) vectors, 

respectively. Moreover, considering the best-visited position of the ith particle as pid and 

the best position explored so far as gid, the updating rules of position and velocity based 

on these three methods are as follows. These rules were employed to develop the PSO by 

coding in MATLAB. 
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Figure 4 Flow chart of particle swarm optimisation algorithm  

 
Source: Júnior et al. (2018) 

2.3.2.1 PSO-Original (PSO-O) 

At the initial stage of development, the velocity and position of each particle are 

determined as follows: 

   1

1 1 2 2             j j j j

id id id id id idv v c r p x c r g x         (5) 

1 1j j j

id id idx x v    (6) 

where the cognitive parameter C1 = 2, the social parameter C2 = 2, r1, and r2 are random 

numbers uniformly distributed in the range [0–1], and j = 1, 2… is the current iteration 

(Bai, 2010). 

2.3.2.2 POS-inertia weight (PSO-IW) 

The new velocity and position of each particle are determined according to the following 

equations: 

   1

1 1 2 2                 j j j j

id id id id id idv w v c r p x c r g x          (7) 
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1 1j j j

id id idx x v    (8) 

     max min

max

max

w w
w w iter

N


    (9) 

where w is the inertia weight or the proportional agent, that controls the influence of the 

last velocity on the current velocity. Generally, ‘w’ follows the linear decrease with 

iteration from 0.9 to 0.4. Therefore, the initial weight wmax = 0.9, the final weight 

wmin = 0.4, and Nmax is the maximum number of iterations (Bai, 2010). 

2.3.2.3 PSO-constriction factor (PSO-CF) 

In this method, the new position and velocity of each particle is determined according to 

the following equations (Clerc, 1999): 

    1

1 1 2 2             j j j j

id id id id id idv k v c r p x c r g x         (10) 

1 1j j j

id id idx x v    (11) 

2

2

2 4
k

c c c


  
 (12) 

where k is the constriction factor, C = C1 + C2 (Dhas and Kumanan, 2011). 

3 Results and discussion 

The results of experiments of the µ-WEDM process of Ni55.8Ti SMA, as averages of 

measurements conducted under each parameter settings based on the orthogonal Taguchi 

array L27 approach, are represented in Table 2. The results of the ANOVA and 

optimisation algorithms are provided in the following sections. 

Table 2 Results of µ-WEDM experiments based on Taguchi’s L27 standard orthogonal array 

Exp. No. 

Input parameters levels Measured output responses 

Ton Toff Id SV KW MRR WLT Ra µH 

µs µs A V mm mm3/min µm µm Vickers (kg/mm2) 

1 3.5 5 0.6 80 0.242 0.270 4.114 0.331 384.7 

2 3.5 5 6 130 0.240 0.363 2.717 0.346 390.5 

3 3.5 5 11 180 0.245 0.313 3.609 0.339 405.4 

4 3.5 10 0.6 130 0.247 0.217 5.048 0.255 378.5 

5 3.5 10 6 180 0.244 0.156 5.494 0.298 396.7 

6 3.5 10 11 80 0.237 0.297 4.334 0.323 494.7 

7 3.5 16 0.6 180 0.251 0.014 5.496 0.232 261.5 

8 3.5 16 6 80 0.237 0.143 3.890 0.306 362.9 
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Table 2 Results of µ-WEDM experiments based on Taguchi’s L27 standard orthogonal array 
(continued) 

Exp. No. 

Input parameters levels Measured output responses 

Ton Toff Id SV KW MRR WLT Ra µH 

µs µs A V mm mm3/min µm µm Vickers (kg/mm2) 

9 3.5 16 11 130 0.238 0.272 2.434 0.299 377.7 

10 5 5 0.6 80 0.244 0.285 5.090 0.281 518.6 

11 5 5 6 130 0.238 0.402 3.188 0.321 536.9 

12 5 5 11 180 0.243 0.353 4.080 0.317 551.7 

13 5 10 0.6 130 0.245 0.257 5.519 0.234 524.8 

14 5 10 6 180 0.242 0.196 5.965 0.276 543.0 

15 5 10 11 80 0.236 0.353 4.733 0.295 640.3 

16 5 16 0.6 180 0.249 0.054 5.967 0.210 407.8 

17 5 16 6 80 0.234 0.183 4.361 0.285 509.2 

18 5 16 11 130 0.235 0.312 2.906 0.278 524.1 

19 7.5 5 0.6 80 0.246 0.344 5.566 0.322 507.8 

20 7.5 5 6 130 0.240 0.462 3.664 0.364 526.1 

21 7.5 5 11 180 0.245 0.412 4.556 0.357 540.9 

22 7.5 10 0.6 130 0.246 0.316 5.995 0.274 514.0 

23 7.5 10 6 180 0.244 0.255 6.441 0.316 532.2 

24 7.5 10 11 80 0.237 0.396 5.281 0.342 630.2 

25 7.5 16 0.6 180 0.250 0.113 6.443 0.250 397.1 

26 7.5 16 6 80 0.236 0.242 4.837 0.323 484.7 

27 7.5 16 11 130 0.237 0.371 3.382 0.318 513.3 

3.1 ANOVA and optimisation of MRR 

The results of the ANOVA of the MRR are shown in Table 3. The regression model 

constructed with 8 DF using the RSM is provided in equation (13). Since the difference 

between the R2 and adj-R2 was approximately zero, the predictive capability of the 

regression model was significant. Additionally, the reasonable agreement between  

the adj-R2 and the predictive R2 showed that the experimental and the predicted data of 

the regression model were identical. 

  on off

2 2 2 2

MRR 0.1987 0.03228  0.02140  0.00834  0.008315 SV

0.000748  0.000298  0.000396  0.000035 SV

d

on off d

T T I

T T I

     

   
 (13) 

As shown in Table 3, the p-value of less than 0.05 and a large F-value indicated that the 

regression model was statistically significant. Additionally, judging from the F-values 

obtained by the ANOVA, the SV, Toff, Id, and Ton were the most significant factors 

affecting the MRR, respectively. 
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Table 3 ANOVA of material removal rate of test samples 

Source DF Adj SS Adj MS F P 

Regression 8 0.31743 0.039679 1172.31 0.000 

Ton 1 0.000686 0.000686 30.27 0.000 

Toff 1 0.005387 0.005387 159.17 0.000 

Id 1 0.002143 0.002143 63.31 0.000 

SV 1 0.037889 0.037889 1119.43 0.000 

Ton×Ton 1 0.000046 0.000046 1.37 0.258 

Toff×Toff 1 0.000479 0.000479 14.14 0.001 

Id×Id 1 0.000684 0.000684 20.21 0.000 

SV×SV 1 0.045290 0.045290 1338.09 0.000 

Error 18 0.000609 0.000034   

Total 26 0.318040    

R2=99.81%, adj-R2=99.72%, pred-R2=99.57%. 

Furthermore, the results of the GA optimisation to determine the input parameters that 

lead to the maximum MRR are shown in Figure 5. As shown in this figure, the MRR 

increases monotonically with increasing Ton and Id while it decreases with an increase in 

Toff. This phenomenon is because of an increase in the discharge energy by an increase in 

the Id and Ton and a reduction in the frequency of discharges with an increase in the Toff. 

Nevertheless, the MRR shows a maximum value for the SV of 115.35 V and decreases 

with a further increase in this parameter. This phenomenon is related to the fact that the 

discharge gap grows with increasing servo voltage, resulting in a larger plasma channel 

with reduced penetration into the workpiece and a decrease in the flushing efficiency at 

the end of each discharge (Mu et al., 2018). 

Also, the accumulative results of GA and PSO-optimisation techniques of µ-WEDM 

parameters to achieve the maximum MRR as well as the values calculated by replacing 

these quantities in equation (13) are shown in Table 4. According to the results, the MRR 

values obtained by the two optimisation techniques are very close and the difference is 

almost negligible. 

Figure 5 Optimum µ-WEDM parameters to achieve the maximum MRR based on GA  
(d: composite desirability index) (see online version for colours) 
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Table 4 Optimum levels of µ-WEDM parameters to obtain maximum material removal rate 

Parameters d. index = 0.99317 PSO 

Ton ( µs) 7.5 7.5 

Toff ( µs) 5 5 

Id (A) 12 12 

SV (V) 115.354 114.96554 

MRR (mm3/min) 0.564219 0.56423 

3.2 ANOVA and optimisation of WLT 

The results of the ANOVA of the WLT are shown in Table 5. Also, the regression model 

constructed with 8 DF using the RSM is represented in equation (14). Based on the 

ANOVA, the difference between the R2 and adj-R2 was less than 0.23%,, and the adj-R2 

and the predictive R2 were very close, demonstrating that the predictive capability of the 

regression model was significant and the predicted data of this model were consistent. 

2

on off on

2 2 2

off

WLT 5.398 0.671  0.8717  0.2180  0.11225 SV 0.0382 

0.040  0.00597  0.000457 SV

d

d

T T I T

T I

     

  
 (14) 

According to Table 5, the p-value and F-value of the model are 0 and 443.77, 

respectively, indicating that the regression model was statistically significant. 

Additionally, judging from the p-values and F-values of the factors, the Id, SV, Ton, and 

Toff were the most significant parameters influencing the WLT, respectively. 

Table 5 ANOVA of white layer thickness on the machined surface 

Source DF Adj SS Adj MS F P 

Regression 8 34.2027 4.27533 443.77 0.000 

Ton 1 0.2961 0.29610 30.73 0.000 

Toff 1 8.9388 8.93885 927.84 0.000 

Id 1 1.4638 1.46378 151.94 0.000 

SV 1 6.9048 6.90481 716.71 0.000 

Ton×Ton 1 0.1203 0.12031 12.49 0.002 

Toff×Toff 1 8.6184 8.61841 894.58 0.000 

Id×Id 1 0.1560 0.1560 16.19 0.001 

SV×SV 1 7.8220 7.82202 811.91 0.000 

Error 18 0.1734 0.00963   

Total 26 34.3761    

R2=99.50%, adj-R2=99.27%, pred-R2=98.86%. 

Furthermore, the results of the GA optimisation to determine the input parameters that 

lead to the minimum WLT are shown in Figure 6. According to this figure, the WLT 

increases monotonically with increasing Ton while there is an opposite pattern for the Id. 

This phenomenon could be explained by the fact that the flushing efficiency of the 
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discharge channel decreases with an increase in the Ton, resulting in a higher amount of 
the molten metal resolidified on the surface of the workpiece and larger WLT. In 
contrast, the flushing efficiency increases with increasing Id which leads to a reduction in 
the WLT (Shabgard et al., 2011). 

Figure 6 Optimum µ-WEDM parameters to achieve the minimum WLT based on GA  
(d: Composite desirability index) (see online version for colours) 

 

Additionally, the accumulative results of GA and PSO-optimisation techniques to achieve 
the minimum WLT and the values calculated by replacing these quantities in equation 
(14) are shown in Table 6. Accordingly, the WLT values calculated based on the two 
optimisation techniques are the same. 

Table 6 Optimum levels of µ-WEDM parameters to obtain minimum white layer thickness 

Parameters d. index = 0.99317 PSO 
Ton ( µs) 3.5 3.5 
Toff ( µs) 5 5 
Id (A) 12 12 
SV (V) 123.434 123.7695 
WLT (μm) 2.05212 2.05212 

3.3 ANOVA and optimisation of Ra 

The results of the ANOVA of the Ra of the machined Ni55.8Ti SMA surfaces are shown in 
Table 7. Also, the regression model obtained with 8 DF using the RSM is represented in 
equation (15). Based on the ANOVA, the difference between the R2 and adj-R2 was less 
than 0.62%, and the adj-R2 and the predictive R2 were very close, showing that the 
predictive capability of the regression model was significant and the experimental and the 
predicted data were consistent. 

on off
2 2 2 2

on off

0.6048 0.08793 0.01641 0.01458 0.000385 SV

0.008342 0.000551 0.000815 0.000001 
a d

d

R T T I
T T I SV

= − − + −

+ + − +
 (15) 

According to Table 7, the p-value and F-value of the model for Ra are 0 and 158.64, 
respectively, showing that the regression model was statistically significant. Furthermore, 
judging from the p-values and F-values of the factors, the Toff, Id, SV, and Ton were the 
most significant parameters influencing the Ra, respectively. 
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Table 7 ANOVA of arithmetic surface roughness of the machined surface 

Source DF Adj SS Adj MS F P 

Regression 8 0.040039 0.005005 158.64 0.000 

Ton 1 0.005092 0.005092 161.39 0.000 

Toff 1 0.003167 0.003167 100.38 0.000 

Id 1 0.006548 0.006548 207.54 0.000 

SV 1 0.000081 0.000081 2.58 0.126 

Ton×Ton 1 0.005751 0.005751 182.29 0.000 

Toff×Toff 1 0.001637 0.001637 51.89 0.000 

Id×Id 1 0.002905 0.002905 92.09 0.000 

SV×SV 1 0.000012 0.000012 0.40 0.537 

Error 18 0.000568 0.000032   

Total 26 0.040607    

R2=98.60%, adj-R2=97.98%, pred-R2=96.85%. 

Furthermore, the results of the GA optimisation to determine the input parameters to 

minimise the Ra are shown in Figure 7. Accordingly, the Ra decreases monotonically with 

an increase in Toff and SV. This is explainable as an increase in the Toff or SV provides 

better flushing of the cutting debris from the discharge gap by reducing the frequency of 

the discharges and increasing the discharge gap, respectively. Consequently, the 

possibility of arc discharges decreases, raising the percentage of normal discharges and 

improving the surface finish (Kumar et al., 2015). However, the Ra is minimum under 

specific levels of Ton and Id at which there is a balance between the size of the craters 

formed on the surface of the workpiece by the successive discharges and the flushing 

efficiency of the plasma channel at the end of each discharge. Less overlap of the craters 

and improvement of the surface finish of the machined workpiece by an increase in the 

Toff and SV and decrease in the Id could be seen in the SEM images in Figure 8. 

Figure 7 Optimum µ-WEDM parameters to achieve the minimum WLT based on GA  
(d: Composite desirability index) (see online version for colours) 

 

Additionally, the accumulative results of GA and PSO-optimisation techniques to achieve 

the minimum Ra and the values calculated by replacing these quantities in equation (15) 
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are shown in Table 8. Accordingly, there is high proximity between the Ra values 

calculated based on the two optimisation techniques. 

Figure 8 SEM images of surface topography of Ni55.8Ti SMA after μ-WEDM at; (a, b) 
Ton = 5 μs, Toff = 10 μs, Id = 11 A, SV = 80 V and (c, d) Ton = 5 μs, Toff = 16 μs,  
Id = 0.6 A, SV = 130 V 

 

(a) 

(b) 

(c) 

(d) 

 

Table 8 Optimum levels of µ-WEDM parameters to obtain minimum the arithmetic surface 
roughness of the machined surface 

Parameters d. index = 0.976916 PSO 

Ton ( µs) 5.19697 5.13421 

Toff ( µs) 15.2222 15.15309 

Id (A) 3 3 

SV (V) 180 180 

Ra (µm) 0.23957 0.23960 

3.4 ANOVA and optimisation of µH 

The results of the ANOVA of the µH of the machined surface are shown in Table 9. 

Also, the regression model obtained with 6 DF using the RSM is represented in  

equation (16). Based on the results of ANOVA, the difference between the R2 and adj-R2 

was 0.05%, and the adj-R2 and the predictive R2 were close enough to show that the 

predictive capability of the regression model was significant and the experimental and the 

predicted data were consistent. 

  2

on off on

2 2 2

off

µH 498.3 312.45  35.99  7.460  0.535 SV 25.387 

1.9655  0.0775  0.000068 

d

d

T T I T

T I SV

      

  
 (16) 



   

 

   

   

 

   

   

 

   

   34 H.A.M. Meshri et al.    
 

    

 

 

   

   

 

   

   

 

   

       
 
 

As shown in Table 9, the p-value and F-value of the model for µH are 0 and 1928.27, 

respectively, indicating that the regression model was statistically significant. 

Furthermore, judging from the p-values and F-values of the factors, the Ton and Id were 

the most significant factors influencing the µH of the Nitinol samples in µ-WEDM, 

respectively. Additionally, the Toff and SV parameters, based on p- and F-values, were 

equally significant in µH. 

Table 9 ANOVA of micro-hardness of the machined surface 

Source DF Adj SS Adj MS F P 

Regression 8 202148 25268.5 1928.27 0.000 

Ton 1 64285 64285.3 4905.67 0.000 

Toff 1 15236 15236.3 1162.70 0.000 

Id 1 1713 1713.5 130.76 0.000 

SV 1 157 157.1 11.99 0.003 

Ton×Ton 1 53270 53269.9 4065.07 0.000 

Toff×Toff 1 20803 20803.2 1587.51 0.000 

Id×Id 1 26 26.3 2.01 0.174 

SV×SV 1 0 0.2 0.01 0.909 

Pure Error 18 236 13.1   

Total 26 202384    

R2 = 99.88%, adj-R2 = 99.83%, pred-R2 = 99.74%. 

Furthermore, the results of the GA optimisation to determine the input parameters that 

lead to the minimum µH are represented in Figure 9. As shown in this figure, increasing 

the discharge energy due to an increase in the Id leads to a monotonic increase of the μH. 

An increase in the µH of the machined surface was mainly due to the formation of metal 

oxides on the surface of nitinol alloy (Manjaiah et al., 2015). The presence of oxygen and 

Cu elements on a typical machined surface originated from the decomposition of the 

dielectric fluid and the cutting wire, which were confirmed from the EDS results 

represented in Figure 10(a). Also, the formation of the oxides on the machined surface 

was confirmed by the XRD analysis represented in Figure 10(b). The formation of the 

oxide phases and changes in the micro-hardness of the machined surface is highly 

dependent on machining parameters. 

Figure 9 Optimum µ-WEDM parameters to achieve the minimum µH based on GA  
(d: Composite desirability index) (see online version for colours) 
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Figure 10 Analyses of machined surface of Ni55.8Ti SMA after the μ-WEDM process under 
Ton = 5 μs, Toff = 10 μs, Id = 11 A and SV = 80 V: (a) electro diffraction spectroscopy 
and (b) X-ray diffraction spectroscopy 

 

(a) 

(b) 

 

Also, the accumulative results of GA and PSO-optimisation techniques to achieve the 

minimum µH as well as the results of calculations by replacing these quantities in 

equation (16) are shown in Table 10. Accordingly, the levels of optimum process 

parameters and therefore, the results of µH values are identical for both of the 

optimisation techniques. 

Table 10 Optimum levels of µ-WEDM parameters to obtain a minimum micro-hardness of the 
machined surface 

Parameters d. index = 1.0 PSO 

Ton ( µs) 3.5 3.5 

Toff ( µs) 16 16 

Id (A) 3 3 

SV (V) 180 180 

µH, Vikers (kg/mm2) 281.9392 281.9392 

4 Conclusions 

The significance of the µ-WEDM process parameters on response variables in the 

machining of Ni55.8Ti SMA, including the MRR, WLT, SR, and µH, were investigated 

using Taguchi’s L27 orthogonal array technique of RSM and ANOVA. Gradient 

algorithm (GA) and PSO techniques were used to determine the optimum levels of input 

parameters to obtain the best levels of response variables. The outstanding results of this 

study are summarised as follows: 
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1 The most effective parameters on the MRR were SV and Toff. The maximum MRR 

of 0.564 mm3/min was obtained under Ton, Toff, Id, and SV of 7.5 µs, 5 µs, 12, and 

115.35 V, respectively. MRR increased monotonically with increasing Ton and Id 

while it decreased with an increase in Toff. 

2 The most effective µ-WEDM parameters on the WLT were Id and SV. The optimal 

parameters of Ton, Toff, Id, and SV to minimise the WLT to 2.052 µm were 3.5 µm, 

5 µs, 12 A, 123.43 V, respectively. The WLT increased monotonically with 

increasing Ton while there was an opposite pattern in the case of Id. 

3 The most effective µ-WEDM parameters on the Ra were Toff and Id. The optimal 

levels of Ton, Toff, Id, and SV to achieve the Ra of 0.239 µm were 5.19 µs, 15.22 µs, 

3 A 180 V, respectively. The surface roughness decreased monotonically with 

increasing Toff and SV. 

4 The Ton and Id were proved as the most significant µ-WEDM parameters on the µH. 

The levels of Ton, Toff, Id, and SV to obtain the minimum µH of 281.94 kg/mm2, were 

3.5 µs, 16 µs, 3 A, and 180 V, respectively. The presence of oxygen and Cu 

elements, as well as the formation of metal oxides in the white layer, were the 

primary causes of rising the µH of the machined surfaces. 
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