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Abstract: Industrial control systems (ICSs) are more vulnerable to cyber threats owing to their
network connectivity. The intrusion detection system (IDS) has been deployed to detect sophisticated
cyber-attack but the existing IDS uses the packet header information for traffic flow detection. IDS
is inefficient to detect packet deformation; therefore, we propose the adoption of packet payload in
IDS to respond to a variety of attacks and high performance. Our proposed model detects packet
modification and traffic flow by inspecting each packet and sequence of packets. For evaluation, cross
verification is conducted to increase the reliability of the statistics.
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1 Introduction

The connectivity of the internet has expanded to cover many
industrial domains through Internet-of-Things (IoT) (Brändle
and Naedele, 2008); therefore, cyber-security is becoming
an important influence for the maintenance and operation
of those networks. Especially, the industrial control system
(ICS) that has been designed for energy, gas, water, and
transportation facility is also connected with the network, even
with the internet. These systems are considered being safe and
reliable because they have been designed with an emphasis
on operationality and security due to the importance of the
facility. However, it is reported that ICS networks are also
exposed to security threats and the number of reports regarding
the threats and vulnerability is increasing (Maglaras et al.,
2018; McLaughlin et al., 2016).

To cope with security threats, oneof the general approaches
is to adopt policies and guidelines such as profiles, accounts,
and permissions (Nicol et al., 2008) which define how users
access the network or handle the environment. For technical
approaches, traditionally data encryption and firewalls have
been exploited. Data encryption is a good way to protect
the contents of system data, but it requires an encryption
process, which can hinder operationality depending on the
system environment. However, encryption is not applicableto
cover all different types of problems. Firewalls can be installed
easily at low cost and require fewer calculations for judgement,
which makes them fast to operate. However, firewalls work by
setting rules, not by understanding packets. Zero-day attacks
or newer types of attacks are not part of the rules and thus
they are hard to be detected. Furthermore, defining rules is
difficult and requires continuous updating of rules to eliminate
vulnerabilities (Garcí-a-Teodoro et al., 2009). Therefore, an
additional security system is needed to understandpacketsand
distinguish between normal and abnormal packets.

Intrusion detection system (IDS) has been widely used to
detect abnormal packets. It can be classified as network-based
IDS (NIDS) and host-based IDS (HIDS), depending on the
location of the installation. NIDS is installed at specific points
in the network, and detects intrusion on multiple hosts, thereby
detect attacks looking for targets, scanning vulnerabilities, or
entering the system. This approach targets network packets
that can be analysed regardless of the host systemenvironment.
Therefore, NIDS analyses network traffic flow or packet
content and uses snipping to do this. In contrast, HIDS is
installed inside a specific host and monitors various states

of the host internal system to detect certain behaviours or
abnormal situations. HIDS analyses system calls on the host,
application logs, file system changes, operational status,etc.

ICS consists of devices for various environments.
ICS is comprised of a variety of applications, such as
industrial control (IC), industrial process measurement and
control (IPCM), supervisory control and data acquisition
(SCADA), distributed control (DC), metering, monitoring
and diagnostic (MMD), networked electronic control and
sensing (NECS), programmable logic controller (PLC), and
distributed automation (DA) systems (Cheminod et al., 2013).
Further, sensors, PLCs, managed devices, andworking devices
have different system environments. For sensors or PLCs,
system performance may be limited and security technologies
may need to consider limited performance. Therefore, NIDS
is a realistic solution for ICS of many devices and our focus is
on NIDS which can be installed out of each device, because it
is not essential to consider the environment and performance
of each device.

In literature, IDS has adopted machine learning techniques
to learn the behaviour of data traffic. IDS-related studies
have mainly used support vector machine (SVM), cluster,
and K-nearest neighbour (kNN) techniques. Those studies
do not use network traffic as input for model generation,
but with special preprocessing such as KDD99 and NSL-
KDD (Tavallaee et al., 2009), data of a certain characteristic
or packet header information can be extracted (Mahoney
and Chan, 2001). Some studies perform byte conversion
using payload bytes. Conversion of Z-string, byte distribution
information (Wang and Stolfo, 2004; Kind et al., 2009), or
partial bytes are exploited to model payload data (Hareesh
et al., 2011). Other studies use packet headers, only abnormal
parts of the traffic flow, such as DoS and new IP intrusions,
for detection. Meanwhile, some studies use payload bytes to
detect attacks using payload modification that modifies bytes
instead of intact ones. In addition, studies using public data
find it difficult to verify that they can function properly even in
the network environment they want to install (Khandpur et al.,
2017).

The overall configurationof the proposeddetection system
is shown in Figure 1. First, packet data is pre-processed into
the image form. Detections are performed using pre-processed
image data, and detections consist of two methods. Single
packet anomaly detection checks the status of individual
packets to detect abnormalities in individual packets. If all are
normal, the packet sequence anomaly detection will organise
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the packet previously identified into a single window and
use the window as input data to detect abnormalities in the
traffic flow. Because the packet was converted to image form
during pre-processing, all information need not be parsed
when analysing the payload of packets through this method.
Users can get hints of normal or abnormal characteristics by
looking at the shape in which the hex values of the payload
coming from tools such as Wireshark. In other words, one
learns the common characteristics between normal packets
by looking at the packet form as one image. Packet images
showing different singularities are judged to be abnormal
packets.

Figure 1 Our anomaly detection system for payloads of ICS
network traffic using CNN (see online version
for colours)

The network traffic consist of 11 sites, collected from active
control systems in critical infrastructure, and collectedover a
period of 3–29 days per site. In the case of data size, totaling
about 18 TB, of which site No. 11 accounts for about 15 TB
(Yun et al., 2018). The study was conducted by analysing
and utilising traffic data from various sites and various points
in time of this network data. The study was conducted by
analysing and utilising traffic data from various sites and
various points in time of this network data.

We use and analyse network traffic collected from running
ICSs of critical infrastructure, where we find that the payload
information in ICS typically has a pattern in the payload,
unlike the internet traffic. As a means of utilising the entire
payload, the detection model learns network packets like an
image. To utilise image, we use a convolutional neural network
(CNN) that is effective in image processing as a detection
model. Through detection models using CNN structure, we
propose two types of detection: single-packet detection and
sequence-of-packets detection. In the work, we focused on
the anomalies related to the falsification of values on packet
which can occur critical problems in ICS system because
of the vulnerability of PLC. SSSP attacks, SSMP attacks,
MSSP attacks, and MSMP attacks (Adepu and Mathur, 2018)
are the representative examples. Our proposal is designed to
detect anomaly which comes from these value falsification
and measurements errors with applying payload in detection
model.

To fit in the input of CNN models, we also introduce
histogram, padding, and filter methods to pre-process packet
payload. To learn the payload information, we generated

abnormal data and then conducted performance verification
on each of the detection models and further improved the
reliability through cross-validation. Our approach to make a
model from the payload of packets using CNN is feasible
for ICS traffic. Network traffic in a typical environment is
transmitted by various protocols such as FTP, HTTP, and VoIP.
Also, it is difficult to use payload data directly because it is
encrypted over SSL/TLS. Protocols such as DNP3, Modbus
for ICS are designed for availability and without encryption, or
predetermined message formats. According to our knowledge,
this work is the first to apply CNN directly to the raw payload
without protocol-specific preprocessing.

The remainder of this paper consists of seven chapters.
Section 2 introduces existing techniques and studies related
to IDS, and Section 3 analyses the network traffic and
introduces machine learning methods. Section 4 explains how
to pre-process packet payload and Section 5 describes our
abnormal detection models. Section 6 shows how to generate
abnormal data and the verification results of the pre-processing
method and the detection model and previously introduced in
Sections 4 and 5. Section 7 summarises the study.

2 Related work

IDS can be classified into signature-based and anomaly-
based detection. Signature-based detection is a way to build
a huge database of attack information and to detect matched
attacks in the database, thus relying on human expertise and
being vulnerable to zero-day attacks. In addition, as attacks
become more intelligent, obvious limitations are observedin
the signature-based detection. On the other hand, anomaly-
based detection is guided by how to define predefined network
behaviour that identifies normal or abnormal behaviour.
Allowable network behaviour depends on the extent of the
learned network data. Thus, anomaly-based detection has been
investigated by complementing the limitations of signature-
based detection and enabling high levels of security.

In statistical approaches, the activities of network traffic
are monitored and profiles are created to represent their
probabilistic behaviour such as traffic rate, the number
of packets for each protocol, connection speed, and the
number of different IP addresses. The earliest statistical
approach to matching NIDS and HIDS is the one-parameter
model which is modelled with independent Gaussian random
variables (Denning and Neumann, 2016). An advantage
of such a statistical approach is the accurate detection
of malicious activities without requiring prior knowledge
of normal activities. The disadvantage is that an attacker
can intentionally learn malicious patterns and make setting
parameters and metrics difficult to work, which assumes an
unrealistic quest process.

One of the most widely used knowledge-based IDS
systems is expert systems that are intended to classify
audit data according to a set of rules. In terms of rules
(specifications) intended to determine reasonable system
behaviour, some models may be manually constructed by
human experts. The most important benefits of knowledge-
based anomaly detection are robustness and flexibility. The



CNN-based anomaly detection for packet payloads of industrial control system 39

main disadvantage is that the development of high-quality
knowledge is often difficult and time- and resource-consuming
(Sekar et al., 2002).

A major highlighted approach is machine learning
techniques that establish a model to classify analysed patterns.
They require labelled data to train the model. In many cases,
the applicability of the machine learning principle is similar to
the applicability of statistical techniques, but machine learning
focuses on building models that enhance performance based
on previous results, thus providing flexibility, adaptability,
and interdependencies. However, machine learningmodels are
heavily dependenton assumptions about acceptable behaviour
of the system and consume a lot of resources.

While machine learning techniques vary depending on the
amount of data and how they are used, they can generally
provide a suitable environment for deploying anomaly-based
detection. Although data is difficult to access and analyse
statistically, and problems that people find are difficult to
specify, they can be characterisedandmodelled by themselves.
The model is also highly scalable and can easily respond
to environmental changes. On the other hand, statistical
approaches are not suitable for payload-based detection
because profiles use information such as the number of
packets, connection speed, and the number of IP addresses.
The knowledge-basedapproach is based on expert experience,
intuition, and judgement and thus mainly enables to analyse
the overall form or part of the feature. Therefore, despite
its feasibility, analysing the entire payload is difficult and
inefficient, whereas it is easily implementable in machine
learning models.

State-of-the-art work using machine learning to implement
IDS is found in the literature regarding machine learning
techniques and data. Since the features available are already
given, existing work has usually used techniques such as SVM,
kNN, and cluster for abnormal detection, with public data
such as KDD99 and DARPA1998 (Tsai et al., 2015; Ingre
and Yadav, 2015; Pervez and Farid, 2014; Ravale et al., 2015)
that provides necessary information for model learning. Such
public datasets also provide packet header information (IP,
Port, payload length) and packet frequency information (Kind
et al., 2009; Lin et al., 2015; Javaid et al., 2016; Wang et al.,
2010). Most studies utilise partial payloads (the first 100 bytes
or some bytes at specific positions) rather than full payloads,
or information of the frequency of the bytes (Hareesh et al.,
2011). The reason why full payloads are not used is that
the machine learning techniques including SVM, kNN, and
cluster are affected by the number of parameters. As a result,
many studies use specific information and small parameters
(Bhuyan et al., 2014).

For detection models that use packet headers as input data,
there is a problem that they have the same header information
and no difference in input data even though the payload
changes (Kind et al., 2009). Furthermore, the methodology
of using byte distribution typically performs the task of
classifying protocols (e.g., VoIP, HTTP, and FTP) (Zhang
et al., 2014) and does not effectively categorise differences
of the same protocol type. In this case, it has high accuracy
but a high false alarm. Therefore, it is not appropriate to

use partial payloads as in the existing studies for anomaly
detection.

To resolve the problems mentioned above while using
payload-based IDS, an alternative solution is to adopt neural
networks. Neural networks are free from the issue of input
data size and work effectively to extract and classify features
(Nguyen and Armitage, 2008). They use each payload byte as
a feature and apply the entire payload for input data. If there are
features and patterns in network traffic, a significant shapewill
be derived when the payload byte value is treated as a single
RGB value and the payload is treated as a whole image. We use
the images of normal packets to learn a model and allow the
detection model to categorise to normal and abnormal packets.
Although there are various structures in neural networks, we
utilise CNN that is used effectively in image processing. In
this work, we use a packet as one image in the process of CNN.

A study conducted by viewing sequence of packet size
without payload (Papadogiannakiet al., 2018) showed that the
sequence of packets could reflect the unique characteristics of
service/protocol.

2.1 Data sharing architecture

There are three major types of data sharing architectures:

• Centralised, multiple datasets hosted at a single
location in a common schema. For example, the Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/)
Data Portal manages genome related data; National
Biomedical Imaging Archive (https://imaging.nci.nih.
gov/ncia/login.jsf) manages DICOM based medical
research data.

• Federated, with a virtual view of physically separate
datasets. For example, Cancer Biomedical Informatics
Grid (caBIG®) (https://biospecimens.cancer.gov/
relatedinitiatives/overview/caBig.asp) is a grid based
data federation infrastructure that supports a CQL query
language across distributed data sources.

• Distributed, physically and virtually separate datasets.

Centralised approach is often limited to common data types.
Biomedical research, however, generates complex data and
often new data types. Distributed approach is often difficult
to retrieve, interpret and aggregate results, and lacks data
consistency between research sites. While caGrid is becoming
widely used in biomedical research community, caGrid itself
has a complex infrastructure and the effort is significant.

Considering the high dynamic nature of biomedical
research and the need of cost effective data sharing, we
develop a hybrid architecture which combines the benefits
of the centralised approach and the distributed approach. In
this approach, a data sharing central server is provided for
multiple distributed data sources, and stores only published
metadata (not raw data or images with large sizes) from
distributed data sources. Users can have flexible management
of data sharing through publishing or unpublishing data with
a simple operation. The metadata contain context information
of original data sources (including raw data) which are still
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managed at distributed research sites. The central server
provides an integrated view of all shared data, and shared data
can be easily aggregated and retrieved from the central server.
This architecture not only is lightweight, but also provides
support of consistent data sharing through collaboratively
managing schema and semantically tagging of data.

3 Network traffic and machine learning

This research uses network traffic collected from the ICS
network in critical infrastructure. First, we analyse the network
traffic to derive any features that could be used for our model.

3.1 Traffic feature

The traffic data has been collected for a period of time and
stored in PCAP format that has a unique information in terms
of length, the number of packets, the number of IP-IP pairs,
and payload length. Its overall characteristics are summarised
in Table 1.

Table 1 Information of a single PCAP

Parameter Value
Size 700MB∼ 1.2GB
Traffic length 40Min∼ 1 h
Number of packet 1Mil∼ 3Mil
Number of IP-IP (one-way) 200∼ 300
Payload length 0∼ 1500 bytes

It contains about 1–3 million packets with a size of about 1 GB
for an hour-long traffic. There are 200 to 300 IPs for one-way,
which means if a link betweenIP 1 ↔ IP 2 is present, the two
directionsIP 1 → IP 2, IP 2 → IP 1 are separately counted.
The payload length varies from 0 to 1500 across PCAPs, but
usually has a regular length over a certain link,IPn → IP k.
Packets contain a set of certain lengths, such as (12, 500, 600),
(570, 600, 1400), etc, owing to the nature of ICS.

When using only payloads of a single packet, a packet
of zero length is excluded because there is no data available
for learning. However, when using multiple packets together,
the zero-length packets are taken into account for the trailing
relationship.

The shape of IP payloads in each communication link
is slightly different but has a unique pattern as shown in
Figure 2. The payload of our dataset exhibits regular gaps,
fixed shapes, repetition of specific values, change in byte
values at specific locations, and no length greater than 1,500.
For communication A in Figure 2, the average payload length
of packets is about 500 bytes, and except for the first few
bytes, the rest of the bytes are all composed of zeros, which
can be a good feature in building machine learning models.
The average payload length of packets in communication B
in Figure 2 is around 1,200 bytes and although it does not
show a particular pattern in the payload configuration, this
may use information such as zero repetition after entering a
certain length. The regularity of these iterations is likely to be
used for machine learning. In addition to these two examples,

there are various forms of communication. Using such features
enables one to discover patterns and characteristics through
neural networks, which might be otherwise difficult to design
models and set rules one by one.

Figure 2 Packet payloads extracted from control system

The traffic used in the study also has some communication
paths that do not have any features such as empty payloads.
These parts seem to be working like normal network traffic
and file transfer. However, traffic does not suddenly disappear
or change when it has a characteristic pattern.

3.2 Machine learning for detection

Detection systems can be largely classified into signature-
based and anomaly-based. Unlike signature-based detection
that builds huge databases and find matched attacks, anomaly-
based detection finds patterns on their own through learning.
Therefore, anomaly-based detection is mainlyused in machine
learning methods and various methods are available for
machine learning, including SVM, kNN, artificial neural
network (ANN), etc. If one byte is viewed as a unit that
contains a certain feature, it has as many as 1500 input data.
SVM and kNN are generally not suitable for utilising these
payloads because they operate with a few features that are
already separated. ANNs are slightly different from such
methods as SVM and kNN. The biggest advantage of using
ANNs is that they can learn from the data they use and create
the approximate function they want. Even if the byte value
itself is used as a feature, it can create a model through an
ANN.

Based on ANNs, deep neural networks such as CNN,
recurrent neural network (RNN), and reinforcement learning
have been evolved. An appropriate model among them is
determined by the characteristics of the data and the purpose
of the model. In this study, we choose CNN models for the
dataset because the payload data collected in an ICS can be
analysed as an image that has been proven to work effectively
with CNN.

Learning models are created using the Tensorflow library
for the CNN structure. The CNN structure consists of a
repeated set of a convolutional layer, an activation function,
and a pooling layer as well as a fully connected layer
(Yamashita et al., 2018). The learning model was constructed
from these layers. The input size of the model is determined
by data and preprocessing methods. The output of the model
is divided into two classes, normal and abnormal. A simple
learning model is shown in Figure 3.
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CNN maintains the shape of the I/O data for each
layer, effectively recognises the characteristics of adjacent
images while maintaining spatial information, and has the
characteristics of images extracted through the pooling layer
that can be gathered and enhanced. These parts can be an
appropriate learning model, as payload characteristics can be
maintained through layers, messages at certain locations can
be highlighted through maintaining spatial information, and
these are reinforced through the pooling layer.

4 Preprocessing

To use machine learning, packet payloads must be tailored to
the input type of machine learning models. This process is
called preprocessing.Machine learning requires extracting the
required data from the collected network data (i.e., PCAP in
our dataset) and matching the input length,but packet payloads
have various lengths. To handle it, the SCAPY library can
be utilised to extract necessary data by reading PCAPs or to
transform them into text and import the data separately. And
it is necessary to change packets of different lengths to a fixed
length.

Figure 3 CNN layer (see online version for colours)

For example, the packet payload data have a length ofPlen

and the input data format of the model isx, then the input size
should satisfyx = 1× Plen. However, payload lengthPlen

varies and therefore cannot always be matched to the size of
x.

4.1 Basic preprocessing methods

In this study, we propose three methods, histogram-based,
padding-based, and filter-based preprocessing methods to
maintain a constant length of input.

4.1.1 Histogram-based preprocessing

Histogram-basedpreprocessing uses the distribution of packet
sizes and has been used as one of the common methods in
existing studies that utilise payloads. It uses byte frequency
informationof packet payloads, thus creating a byte histogram
that has an index, for example from 0 to 255, and a data length
fixed to 256 bytes. Therefore, regardless of the payload length,
it is possible to make a fixed input size. Figure 4 expresses
an example of histogram-based preprocessing where the HEX

value of packet (i.e., payload) is accumulated to obtain a
feature of the model.

For the example in Figure 4, the procedure of this
preprocessing method is illustrated as follows:

• obtain the frequency of byte values of packet payloads
and store them in 256 length array

• then convert an array of 256 lengths containing
frequencies of byte values to the input size of 16×16 for
the model.

Because the generated histogram only shows the byte
frequency, it causes a problem that some position information
of a certain payload that could be useful for protocol
classification is ignored. To solve this problem, we devise
padding-based and filter-based preprocessing.

Figure 4 Histogram-based preprocessing: histogram generation

4.1.2 Padding-based preprocessing

Padding-based preprocessing identifies the maximum length
of data and determines the input size of the model to match
the maximum length. For some data, if the size is shorter than
the maximum length, the rest payload is padded with zeros.
For instance the TCP protocol with the maximum segment
size (MSS), the maximum length cannot be bigger than 1500
bytes, so the length of input data is set to 1500 where the
part other than of the real payload, [maximum length - real
packet length], is padded with zeros. In this paper, we adopted
the maximum length of 1500 based on our observation of the
dataset.

Figure 5 Padding-based preprocessing: basic padding and middle
padding

Figure 5 shows how data is converted through padding-based
preprocessing. The basic padding method begins to populate
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the packet data from index 0 and the rest of the padding values
are filled with zeros. Using the basic padding will result in
the actual portion of the data being pushed to the top left,
which may affect the performance of learning. We also devise
a middle padding method where the actual data can be centred
by placing padding on both sides so that the actual data can
be centred. The procedure of padding-based preprocessing is
illustrated as follows:

• Add zeros for [maximum length - real payload length].
For basic padding, add zeros from the end of the packet
payload. For middle padding, fill zeros for the part
except the centred payload.

• Change the byte information so that the converted data
has a form ofx× y for the model input.

If most payloads have small lengths compared to the
maximum length, this preprocessing may not give good input
features for learning a model.

4.1.3 Filter-based preprocessing

Filter-based preprocessing is intended to yield a fixed length
without padding, by reflecting the byte location informationof
the packet payload. If the filter length isN , the payload that is
shorter thanN is increased to accommodate to the sizeN and
the payload that is longer thanN is decreased to accommodate
to the sizeN .

Figure 6 shows the process of converting packets of length
3 to length 4. The minimum common multiple of 3 and 4 is
12 and thus a 12-length array is created where the number of
bytes to be copied is 4. When creating filter bytes, the number
of bytes to select is 3, so 3 bytes are used in a 12-length array. A
total of four bundles are then selected, and then each bundleis
averaged. Finally, a filter bytearray of four lengths is produced.
The procedure of filter-based preprocessing is illustratedas
follows:

1 Find the minimum common multiple of the filter length
and the length of the current packet payload.

2 Create a byte array by copying each byte of
minimum common multiple

current packet length
to current packet payload.

3 Copy each byte of the current packet payload during
minimum common mutiple

current packet length
to create a byte array.

4 Selectminimum common mutiple

F ilter length
bytes in the copied

byte array and average them to create filter bytes.

5 Repeat step 3 to create the remaining bytes.

6 Convert the bytes so that the filter byte hasx× y for the
model input.

The above process allows the creation of filter bytes to be based
on byte location information or actual byte values. Filter bytes
1 and 2 differ from the original value as it is mixed but are
based on the byte value at that location. It is possible to reflect
as much information as possible in the process of generating
data that fits the filter length.

4.1.4 Example

We now describe an example of the three preprocessing
methods for the same data in Figure 7 where image processing
is expressed in monochrome for the data size of16× 16,
40× 40, and 28× 28. Because the histogram shows the
frequency, (0,0) on the coordinate is the frequency of the
value 0, and (16, 16) is the frequency of the value 256. The
bright part represents the byte value that appears frequently
and the black part represents few or no byte value. Image
coordinates for padding and filter methods represent payload
indexes. The brightness varies according to the byte value.
For padding-based preprocessing, we can see some patterns
appearing repeatedly at regular intervals, and the bottom part
appears black due to padding. For filter-based preprocessing,
the coordinates are not fully matched to the index but are
expressed at a certain rate and repetition patterns are observed,
similar to padding-based preprocessing. The locality of byte
values can be utilised because regular patterns are repeated
when data are imaged by considering the byte position of the
payload.

Figure 6 Filter-based preprocessing

Figure 7 Images as the result of preprocessing of a payload

4.2 Extension of preprocessing using N-gram

N-gram is a method of extracting N consecutive elements from
a string. This method can be further applied to data generated
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through the preprocess described earlier. For example, fora
result of padding preprocessing, N-gram generates input data
that considersN bytes together as shown in the example in
Figure 8. WhenN = 1, its result is the same as the original
data; thus,N is greater than or equal to 2 for this method.
The largerN is, the more information can be provided by
the form of data that can take into account the back-to-back
relationship. If N is large, the input data is also large, so it
cannot be expanded indefinitely, and unnecessary information
can be bundled together. Therefore, proper sizing, i.e., finding
suitableN , is required. In the example of Figure 8, whenN is
1, the byte information is used individually, but whenN = 2,
data are coupled as 07-65, 65-6C, 6C-00, and so on. Such
consecutive data are used effectively in the process of feature
extraction and search.

Figure 8 Example of applying N-gram packet sequence

5 CNN-based anomaly detection model

For anomaly detection by using CNN, we propose two
detection models according to the type of input data: single-
packet detection and sequence detection models. The single
packet detection model detects abnormalities in payloads in a
single packet unit and the sequence detection model detects
abnormal sequences of packets. Here we also explain how to
generate abnormal data so that learning can be done for each
detection model.

5.1 Single packet detection model

The procedure of learning the payload of each packet to
generate the model is shown in Figure 9. The detection model
operates in units of a packet and performs a process to classify
whether the payload of a packet is normal or abnormal. The
detection model attempts to detect when the payload deviates
from normal rules.

Injection attacks attempt to attack by sending or modifying
specific commands. The payload produced by the attack will
not be a command previously usedorwill exhibit a form of data
that is out of the rule set. If a model is created by learning the
normal rules through machine learning, a category for normal
data is created. Therefore, if this category is well designed,
the model itself can be effectively classified for abnormalities
without a particular design.

The layer of the single packet detection model consisted
of INPUT → [CONV +RELU + POOL]× 3 → FC .

The input layer depends on the pre-treatment method. The
padding method is40× 40× 1 and the histogram is16×
16× 1. Although the filter can be resized, it is set to40× 40×
1 to configure the same environmentwhen comparingpadding
method and performance.The[CONV + RELU + POOL]
layer consists of three layers and consists of20× 20× 32,
10× 10× 64, 5× 5× 128. ForPOOL, the mean value was
used. FC is200 in size and its final output is two-class, normal
and abnormal.

Figure 9 The single packet detection model (see online version
for colours)

The window size needs to be set to match the traffic
environment, so it is needed to check the size of window
properly. If the window size is too small for a message, it will
be difficult to design a delicate model. If there is a pattern,
a sufficient set of packets of that pattern should be used for
learning. However, as only a fraction of time is usable in
practice, a model different from the actual pattern may be
created. Conversely, if the model has a large window, it can
be used to learn patterns to the extent that they are not correct.
And because the amount of learning data is so large, it can
take a long time to learn or cause memory problems.

While analysing the traffic, we merge three or four data
packets to a bundle and inspect patterns of packets including
two signal packets which tell beginning and ending of the
bundle. So the window size varies from five to six that contains
a bundle as well as the signal packets. For windows size 4,
signal packets are difficult to contain properly and for size6
it takes a long time to process, but they show performance
similar to size 5. Therefore, we select window size of 5 for
experimentation.

The sequence detection model uses five packets as a
window and 40*40*1 packets in sequential order to form
40× 40× 5 and uses them as input. Therefore, the INPUT
size is40× 40× 5. [CONV +RELU + POOL] andFC

layers were used in the same structure as the single packet
detection model.

6 Experimental results

We verified the single packet and sequence detection
models through our experimentation. The single-packet
detection model tests for normal and abnormal classification
performance based on the abnormal rate. Further, the N-
gram method is applied to evaluate its effect on performance.
The sequence detection model tests for normal and abnormal
classification performance according to the method of
abnormal generation.
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One of the keys to using the machine learning model is to
estimate the performance of the model that responds to the new
dataset, which is verified via cross-validation. Network traffic
is sorted in the form of PCAP files in chronological order.
Suppose test sets 1, 2, and 3, each represented by PCAP1,
PCAP2, and PCAP3, appear in this order. One of the test sets
is used as train data, while the other ones are used as test
data, and this is repeated by choosing one test set as train
data, as illustrated in Figure 10. Tests at different intervals
increase the reliability of the statistics, showing that they can
operate sufficiently over the entire interval, not just at specific
intervals. We need to choose an IP pair link with sufficient
data to proceed with the experiment. So we looked at the IP
pair link information, the number of packets, and the average
payload length contained in one PCAP.

Figure 10 Cross-validation using PCAP dataset (see online
version for colours)

Table 2 shows part of communication links, each with the
number of transmitted packets and their average length. Some
links show more than 100,000 transmitted packets while some
other links do 100 packets only. Also, theaveragepacket length
of some links is more than 100, while that of other links is
close to zero. Under these various conditions, we choose some
links that have enough data for experiments. Since the single
packet detection uses payload data, their packet length should
be long enough. Therefore, we choose 25 IP pair links that
have more than 10,000 packets with non-zero packet length.

We chose different locations for the previously described
traffic information, sites, or collection periods. The
information shown in the table for the selected location is
extracted and the data selection criteria are established and
used for learning or testing. Because the feature of the whole
traffic did not change significantly, a similar result could be
obtained from the use of data from different locations as a
whole was chosen and learning or testing was repeated.

6.1 Generating abnormal ICS traffic based on normal
traffic

Since traffic was collected from ICS in actual normal
operation, abnormal traffic cannot be acquired. As a result,
abnormal traffic generation was required based on normal
traffic collected. Abnormal traffic performed two tasks:
creation of packet content and creation of traffic flow.

6.1.1 Abnormal single packet

This study generates data that expresses abnormalities and
explains how to generate abnormal data. We tried to express
an injection track that was closely related to payloads, andto

do so we tried to transform a certain part of the payload. For
this method, we randomly change a certain ratio of the packet
payload to generate the data for the test and the results showa
modified message, a modified command, and a message that
was out of the rules.

Figure 11 shows an example of abnormal data that has
altered part of the normal data payload. This abnormal data
is exploited so that the model can learn and operate properly.
Continuing learning will create a baseline for normal data in
the model. Generated baseline allows the detection model to
classify whether or not the payload of a packet is a normal
pattern.

Table 2 The number of packets and average packet length in each
link

Average packet
IP-IP Number of packet length
47.91.57.10-47.75.57.15 16,014 0.82
47.75.57.235-47.75.57.15 164,307 503.74
47.75.57.11-47.75.57.15 282,911 103.35
47.75.57.10-47.75.57.15 1,335 6.40
47.75.57.174-47.75.57.15 2,668 16.00
47.75.57.187-47.75.57.15 15,122 7.96
47.75.57.166-47.75.57.15 1,030 42.71
47.75.57.106-47.75.57.15 4,107 619.60
47.93.57.15-47.75.57.15 15,347 0.86
47.73.57.15-47.75.57.15 9,324 0.70
47.87.57.15-47.75.57.15 5,995 1.08
47.95.57.10-47.75.57.15 20,046 0.66
47.89.57.10-47.75.57.15 12,918 0.78
29.209.235.55-47.75.57.15 15,180 150.86
47.21.57.15-47.75.57.15 705 218.58
29.21.255.225-47.75.57.15 7,633 5.35
47.21.57.179-47.75.57.15 123 32.00
29.209.235.207-47.75.57.15 917 4.98
29.21.255.222-47.75.57.15 7,359 5.99
47.75.57.135-47.75.57.15 178 5.00
47.75.57.130-47.75.57.15 178 5.00
47.75.57.131-47.75.57.15 178 5.00
47.75.57.175-47.75.57.15 421 199.83
47.75.57.171-47.75.57.15 120 21.00

6.1.2 Abnormal packet sequence

The sequence detection model also requires abnormal test data
to evaluate the learned model, similar to the single packet
detection model. Unlike a single packet, abnormal test data
is generated in several sequence variations: packet sequence
shuffles regardless of a window, packet sequence shuffle
within a window, packet replacement with an in-window
packet, and packet replacement with an out-of-window. In
Figure 12, the numberN in P [N ] denotes the ordered packet
sequence and the packet colour a characteristic, which means
that the same coloured packets have similar features.

Figure 12 shows4 types that we generate abnormal packet
sequences based on normal traffic for performance testing.
Type 1 of Figure 12 shuffles packets randomly across the entire
PCAP to generate abnormal traffic, thus generating an entirely
random order. Then, this variation creates significant changes
to the original sequence.
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Figure 11 An example of a generated abnormal payload for evaluation ofthe single packet detection model (see online version for colours)

Figure 12 Four methods to generate abnormal packet sequences for evaluation of the sequence detection model (see online version
for colours)

Type 2 of Figure 12 also shuffles packets within a window,
which produces an abnormal sequence that is likely to look
similar to the normal sequence but does not exist in reality.
Suppose there is a certain sequence of packets in each
communication segment. The sequence can be broken if
someone interrupts and injects another packet while sending
a message. This attack can be detected by using this method.
The model can also be used as a traffic check to see if the
sequence in the window can distinguish the changed traffic.

Type 3 of Figure 12 replaces a packet with another
redundant packet within a window to mimic a replay attack.
It selects one packet in a window and replaces that packet at a
different packet location by duplicating some packets within a
window. This expresses the replay attack that sends a normal
packet at a different time. It can be used to check whether or
not a sequence can detect changed traffic.

Type 4 of Figure 12 also considers packet replacement
where a packet is replaced with another packet regardless of
the window. This case can create more serious threats because
the number of different types is more diverse than the packet
replacement within a window. It can be used as a traffic check
to detect if a sequence is changed due to a replaced packet at
a different time point.

6.2 Performance of single packet detection model

We evaluated the performance of models according to each
preprocessing method and then evaluated their applicationto
N-gram.

6.2.1 Comparison of basic preprocessing methods

We first compared the performance of the three preprocessing
methods under the same condition. A total of 25 IP sections
were tested individually. The biggest difference among
padding, filter, and histogram-based preprocessing is whether
the original is retained to take into account the position
information of the byte values.

Figure 13 shows the results of the comparison. The
accuracy of the padding and filter methods is between 94%
and 95%, while the histogram method shows the accuracy of
85%. This gap comes from byte position information in the
padding and filter methods.

Table 3 shows the result of each IP pair link. Padding and
filter-based preprocessing methods show similar performance
in most cases, and the histogram-based one shows a large
difference in normal detection, although they have similar
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detection ratios in abnormal detection. Darker background
colour represents data with relatively higher accuracy. The
padding and filter-based method for indices 19, 20, and 21
show near 99% of accuracy in normal classification, but
the histogram-based method show only 30% of accuracy.
The data in indices 19, 20, and 21 have a byte value at
a specific location. Therefore, it is confirmed that location
information could give a significant impact on classification
performance.

Figure 13 The performance of the single packet detection model
with the three preprocessing methods (see online
version for colours)

Table 3 The result of the single packet detection model for each IP
pair link (see online version for colours)

Padding and filter-based preprocessing show similar
performance on average, but some differences are witnessed.
First, there is a difference in the packet length. The
average length for best accuracy is 237 and 127, each
for padding and filter-based preprocessing, respectively.

Second, communication patterns are different. Padding-based
preprocessing shows better results for data of different lengths
and filter-based one does better results for data of similar
length. Figure 14 shows a comparison between padding and
filter methods. Information about the variation in packet
length appears in the pattern and average packet length can
be used to determine how to preprocess. In comparison with
average packet length, packets that are large than average
or short than average, are denoted as long packet and short
packet respectively.

Figure 14 Accuracy comparison of the single packet detection
between padding and filter preprocessing (see online
version for colours)

We also witnessed low accuracy in some IP pair links, e.g.,
16, 17, 23, and 25, for all three methods, where no features
are found. The results of imaged packets with no pattern are
shown in Figure 15. It is difficult to find any feature in this
case and it is confirmed that the actual length or message of
bytes is diverse and does not have any features. This seems to
be the result of file data, the transmission of general network
traffic, which has nothing to do with typical ICS traffic.

Figure 15 Examples of payload-preprocessing results

6.2.2 Result of N-gram extension

The test results of various communication segments have
shown that preprocessing can work effectively. Further, we
evaluated the impact of N-gram on padding and filter methods
that maintain the localisation information of bytes. The same
experimental data as before are used for all N values. That is,
the other conditions are all the same, but N values are different.

Figure 16 shows the average accuracy when N-gram is used
with padding-based preprocessing for the data from test results
obtained in different sections. Although the results vary for
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each communication section, the average accuracy increases
as N increases. However, whenN is 5, its performance seems
to be worse than the caseN = 4. This is because unnecessary
data has been considered, thus causing interference. The
results of recall, precision, and f-measure when N-gram is
applied to padding-based preprocessing. In order to further
refine, each result is also divided to normal (true) and
abnormal (false). In general, recall and precision are inversely
proportional, showing opposite trends for true and false cases.
As for normal cases, the accuracy is already high regardless
of N . In contrast, improvements are more clearly seen as
N increases in abnormal cases. For normal cases, sufficient
accuracy is achieved regardless ofN . Therefore, the results
are displayed with a focus on the abnormal detection accuracy
according toN . As the average result shows in the preceding
figures,N > 1 generally shows higher accuracy thanN = 1.

Figure 16 The impact of N-gram on the padding preprocessing for
performance of the single packet detection (see online
version for colours)

Figure 17 The impact of N-gram on the filter preprocessing for
performance of the single packet detection (see online
version for colours)

We conducted an experiment by applying N-gram to the filter
method in the same way as we did with the padding method.
Figure 17 show the impact of N-gram on filter preprocessing.
Like the accuracy in padding-based preprocessing, the average
accuracy keeps increasing fromN = 1 toN = 4 but reduces
whenN = 5. The other performances are also similar to those
of padding preprocessing.

The results thus far show thatN > 1 is always better than
N = 1. The case,N = 4, shows the highest accuracy.For data
where location information of payload is meaningful and that
affect other values, N-gram is very effective on the results.
Although this study found that the case,N = 4, achieves the
highest accuracy, the result would be different if more complex
data or learning from an in-depth model is needed. In general,
as N increases, the size of the data that is generated increases,
so more memory, time, and resources are consumed. It is
necessary to specify the size,N , that is appropriate for the
learning environment.

6.3 Performance of sequence detection model

Sequence learning uses a sequence of normal network traffic.
To generate sequence data, use the padding method to attach
packets in order. This process produces sequence input data
that combines packets. We experimented with four types of
abnormal sequences. For normal traffic, a constant sequence,
regardless of the time point, would be well classified. In case of
abnormal traffic, each of the abnormal types is tested. Because
each abnormal type has different sequence characteristics, we
were able to test them by type and check information about
vulnerable patterns based on accuracy to determine which
features are well detected. Based on these results, a set of
criteria for organising learning data will be presented to enable
classification of specific patterns.

Figure 18 shows nearly 99% of accuracy for normal cases.
In other words, there is regularity and persistence in the
normal sequence. These characteristics can be used to easily
generate criteria for normal sequences in the model. The
average accuracy of the abnormal case is about 90%, which
varies dependingon the type of sequence abnormalities. Types
1 and 2 represent packet sequence shuffle, each in the full
range and the window range, respectively. Because both types
are in a different order, there are many differences between
normal and abnormal sequences; therefore, their model has an
average accuracy of 96% in both types. Types 3 and 4 replace a
particular packet with a different packet, each within a window
and out of a window, respectively. These two types modify
the sequence for the abnormal sequence to look like normal
sequence, thus yielding no significant difference in normaland
abnormal sequences. Their average accuracy is around 85%.
Since the model is constructed based on Type 1, the accuracy
is relatively lower than Types 1 and 2.

Table 4 shows the average accuracy of sequence detection
for each IP-pair link when each type of abnormal sequence is
used. For normal sequences, nearly all IP-pair links show high
accuracy. If patterns exist for different links, the criteria for
normal sequences can be easily generated. Both types 1 and 2
show similar results, since the variation in the order completely
alters the normal pattern regardless of the range. In Types 3and
4, some IP pair links differ from each other. At links indicesas
12, 13, 14, and 15, Type 3 achieves relatively low accuracy of
70% but Type 4 achieves 95%. In contrast, at links of indices
1, 2, 7, and 11, Type 3 achieves 90% and Type 4 does 80%
of accuracy. These differences are found in the characteristics
of the traffic. The accuracy of Type 3 is degraded if multiple
communication patterns exist, and that of Type 4 is degraded
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if the communication pattern is monotonous. Generally, there
are not enough datasets that respond to other characteristics.
To obtain high accuracy for both types, the amount of dataset
should be sufficient.

Figure 18 The average accuracy of the packet sequence detection
(see online version for colours)

Table 4 The accuracy of the sequence detection for each IP-pair
link (see online version for colours)

7 Conclusion

In this study, we address payload-based detection against
payload content and packet flow conversion attacks. To do so,
we choose the CNN model and propose basic preprocessing
methods such as padding, filter, and histogram to utilise
the payload of packets. We also propose to use N-gram to
improve preprocessing methods. We then develop two models,
single packet detection and sequence detection. Verification is
conducted through n-cross validation to increase the reliability
of performance verification.

Because single packet detection only considers payloads,
it was not possible to detect attacks effectively when using
normal packets such as replay deck. To complement this, the
sequence detection model considers a packet sequence. To
address the problem of learning and testing due to the absence
of abnormal traffic, a method of generating abnormal traffic
for each situation was devised, which created abnormal traffic
for each model situation.

The experimental results showed performance
comparisons for each preprocessing method. The padding
and filter methods maintain their original form to the full,
thereby enhancing the accuracy, compared to the histogram
method. The basic preprocessing method was then applied
with N-gram, an extended preprocessing method, to improve
the performance. We generated a model forN values from
1 through 5, and found that the case,N = 4, achieves the
highest performance. Therefore, applying N-gram is verified
to enhance performance.

The sequence detection model showed 99% of accuracy
for normal sequences and 90% of accuracy for abnormal
sequences. Based on the results of the experiment, we
conclude that the sequence detection model could work
effectively. Because both a single packet detection model and
a sequence detection model have shown high accuracy, it can
be an effective detection method if each situation is judged
while operating together.

The methods proposed in this study can easily build
detection models without requiring special analysis and design
of traffic while achieving high classification accuracy. Andwe
expect to overcome the relatively insufficient abnormalities
by strengthening the layer of a model or using more data. As
future work, we will study more specific abnormal situations
and try to figure out how much performance can be improved
by increasing the layer of a model or data.
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