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structural design. A design case including a DC-motor, a
belt drive and a load component is modelled and a physical
design approach is developed for the belt component. A
multi-objective multidisciplinary method is employed to
optimise this conceptual system. The system model is tried
to be simple enough for time efficient evaluations while
it captures important system behaviour and properties. The
aim with presented method and design case is to broaden
use cases of the approach and to evaluate the application
of extended framework to a more complex system. The
co-design steps in our method are as follows:

1 a conceptual mechatronic system is considered

2 the system concept is configured by drag and drop of
components from the library of IDIOM framework

3 system specification and requirements are provided

1 Introduction

Design optimisation of mechatronic systems is a 
cumbersome task that requires engineers from different 
disciplines to work together and share information. As the 
information about design process increases, the freedom for 
engineers to use the information decreases (Ullman, 2003)
(shown in Figure 1).

Since, integration of several tools to consider design 
aspects from different domains is highly cost inefficient, 
a multidisciplinary design method with a supported 
software framework considering cross-domain synergies 
and targeted product properties can be useful. This paper 
extends methodology and supported software framework 
as integrated design optimisation of mechatronic systems 
(IDIOM) that was introduced in previous studies by Frede 
et al. (2013), Rahimi et al. (2017) and Rahimi and Wikander 
(2020) on developing a holistic co-design optimisation 
to cover embedded control implementation impact on
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4 mechanical/electrical components are designed and
dimensioned with respect to the imposed internal
physical constraints and cost functions

5 dynamics of the system is symbolically derived by
Mathematica solver

6 if the system is nonlinear, it is linearised at specified
operational points

7 the controller is designed for the evaluated open loop
system

8 the system is discretised using calculated sampling
time

9 control constraints are evaluated by substituting the
numerics of physical design parameters into the
symbolic system

10 if the constrains are all satisfied, then the possible
optimal solutions are derived

11 the optimisation is terminated when the generation
and population size are achieved

12 a weighted sum function is applied on the
Pareto-front set and normalised objectives to obtain
the final optimum solution.

In our method, the requirement on a conceptual system
is a position profile that is connected to a mass/inertia
body called a load component which impose requirement
as force/torque that should be handled by the system.
Component models are dimensioned/designed for this
type of a profile while satisfying physical and control
constraints. The objectives of optimiser can be size,
energy, cost, efficiency, reliability, safety, and hardware
or implementation expenses. This approach assists in
designing a proper controller with optimised configuration
by treating engineering domains, simultaneously.

Figure 1 The design process

Source: Ullman (2003)

The outline of the paper is as follows: Section 1 is an
introduction of the presented method and contribution.
Section 2 briefly presents related work and the existing
gaps. Section 3 includes the applied method. Section 4
presents physical models relevant to a design case.
Section 5 is a presentation of physical design constraints.

Section 6 describes the control method. Section 7 presents
multi-objective optimisation problem, and the achieved
results, and discussions. The paper is concluded in
Section 8.

2 Background

The value of integrated design approaches for mechatronic
systems has been recognised especially for systems with
couplings between physical and control system design
(Youcef-Toumi, 1996). A method for designing mechanical
structures considering dynamic specifications is presented
by Asada et al. (1991). They have applied their method on
a flexible robot arms and located the poles and zeros by
modifying geometry of the arms. Inverse mapping approach
is employed in their method to derive the mentioned
geometry. Ravichandran et al. (2006) used co-design to
minimise energy of a counterbalanced manipulator, and
employed gravity balance as a proxy objective, which
resulted in a modified sequential process. Park and Asada
(1994) used co-design on a manipulator and employed
simplified system performance metrics, like settling time.

Allison (2012) applied plant-limited co-design (PLCD)
method on a robotic manipulator. PLCD method is
usually used on an existing system to modify control or
physical design at minimum cost and attempts to meet
new specifications and requirements. The new requirement
in their method for this design case was defined to
minimise energy consumption for a pick and place
task. Subsequently, a formal method to identify plant
modifications was introduced by Allison (2013). In their
method, a co-design approach was used to minimise the
cost of plant modification, as PLCD.

O’Driscoll (2002) used design for manufacture (DFM)
method to address the coupling between product design
and manufacturing by considering manufacturing needs
during product development. DFM is to design products
by taking manufacturing issues into account. Early
consideration of manufacturing related requirements
shortens the product development cycle time, minimises
the cost for development, and ensures a smooth transition
into production. Jain and Tsiotras (2008) presented a
multi-resolution-based approach for direct trajectory
optimisation. Their method generated a non-uniform grid
automatically and increased numerical efficiency and
robustness which assisted in handling control and state
constraints without additional computational complexity.

Kurdi and Beran (2008) used temporal spectral element
method for discretisation of time-dependent differential
equation and optimisation of a dynamic system by
computing monolithic-time responses and constraints.
Becerra (2010) introduced PSOPT (open source optimal
control solver written in C++), which is used for the
solution of complex optimal control problems. They used
an illustrative example to explain features and capabilities
of this software. Trivedi et al. (2008) proposed an optimal
design method for OctArm manipulators which involves
specifications of air muscle actuators and configuration
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of sections to maximise dexterity and load capacity
for a given actuation pressure. In their method, after
generating design rules for the optimisation problem,
optimal solutions for pneumatic and hydraulically actuated
soft robotic manipulators were obtained. Their method
addressed trade-off in soft manipulator design between
dexterity and strength.

Prevalent design processes are usually based on
sequential steps, where the physical system is designed
first and followed by a controller design which reduces
flexibility and has costly iterations in the case of
errors appearing in the system. Therefore, in order to
achieve a true optimal design, exploiting synergies between
physical and control design decisions is required. Designing
mechatronic systems including mechanical properties and
dynamic response involves constraints that need to be
satisfied over a time interval where the objective functions
should also be evaluated over this interval. Efficiently
designing a constrained optimisation is challenging, since
the responses are implicitly correlated with the design
variables. In this paper, a method for holistic co-design
optimisation of mechatronic systems is presented which
considers physical structure, control and implementation
factors, simultaneously, and results in a time efficient
optimum solution. The relevant studies in the literature
ignore the impact of control implementation on the physical
design and lack integration of several domains in an early
stage of design. In this work, a design case is considered
and sampled. A sensor quantisation model is used and the
impact of design variables on the optimisation objectives is
discussed.

3 Method

The method for system evaluation together with the pseudo
code is presented in Algorithm 1. For an arbitrary system
composed of K physical components, the method goes
through a few steps as shown in Algorithm 1 to evaluate
the optimum solution. The inputs for this algorithm are
the system concept (Gp), design parameters (pk), design
variables (vk) and their ranges (Dk). The output of this
algorithm is a multidisciplinary optimum solution (f ).

In lines 1 and 2, the static load transfer model (Stk)
is executed for all components except the load component
(K) to evaluate physical dimension model (Pdk), in line 3,
for design purposes. Static transfer model captures static
transformation of the load profile (position/torque) from
one side of a component to the other. These models are
needed for initial physical dimensioning of the components.
Regarding the component type, the physical dimension
is based on load properties such as RMS (root mean
square) and peak values of the given load (motion and
torque profiles). The physical dimension model captures
load carrying capacity of the component as a function of
component properties such as size, energy or cost (Rahimi
et al., 2017).

In line 4, the design answers (Ask) are calculated
in component level which are related to the targeted

optimisation criteria. If the physical design constraints are
satisfied, the design answers (Ask) are real values, so
the algorithm goes through dynamic (Dyk) evaluation in
lines 6–11. Therefore, Wolfram Mathematica solver starts
to evaluate open loop system model (Tfop or SSop). For
nonlinear systems, the model is linearised and sent back
to MATLAB in line 9. The closed loop system (Ccl)
is constructed in line 10 and the control performance
constraints (cpcj) for j = 1, ..., γ are evaluated in line 10.
If the constraints are in a defined boundary (bj), then the
final optimisation objectives are calculated. This iteration
is repeated until the generation and population size for the
optimiser are achieved. A weighted sum function is applied
on the result which is in a form of Pareto front set to derive
the final optimum solution (f ) for the system.

Algorithm 1 Dynamic system configuration (DSC)

[min f ] = DSC(Gp, pk, Dk, vk)
Require: system concept (Gp), design parameters (pk), range

for design variables (Dk), design variables (vk);
Ensure: min f ;
1: Repeat
2: Execute Stk, for k = 1, ...,K − 1
3: Evaluate Pdk, for k = 1, ...,K − 1
4: Calculate Ask, for k = 1, ...,K − 1
5: if Ask ∈ RQk then
6: Read Dyk
7: Start Wolfram Mathematica
8: Evaluate numerical TFop/SSop

9: Read TFop/SSop by MATLAB
10: Construct closed loop system (Ccl)
11: Compute cpcj for j = 1...γ
12: if cpcj ≤ bj is true then
13: Out numerical cpcj
14: Evaluate minvk∈Dk

∑χ
j=1 objj(v

k)
15: else
16: cpcj = ∅
17:

∑χ
j=1 objj(v

k) = invalid
18: end if
19: else
20:

∑χ
j=1 objj(v

k) = invalid
21: end if
22: Until (generation and population size for the optimiser are

achieved)
23: Terminate the Optimiser
24: Apply (weighted sum function)
25: Output f

4 Physical model

The models described in here are relevant to the case study
that will be discussed in the next sections. Dynamics of
the physical component models together with the interface
equations given in equations (1)–(16) are configured to
formulate the continuous time state-space model.

4.1 DC-motor dynamics

KT iin = Tm,out + Jmϕ̈m (1)
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where KT is the motor torque constant and iin is the
current. Jm is the rotor inertia and Tm,out is the output
torque.

Figure 2 Belt terminology and geometry (see online version
for colours)

Source: Collins et al. (2009)

4.2 Belt drive dynamics

The nonlinear dynamics for belt drive are adopted from
Yang (2000) considering Figure 2.

Jp1 θ̈1 = Tv,in + r1(Tt − Ts) (2)

Jp2 θ̈2 = r2(Ts − Tt) + Tv,out (3)

Ts = F0 +
EA+ F0

lc − r1θ1 + r2θ2
(r1θ1 − r2θ2) (4)

Tt = F0 +
EA+ F0

lc − r2θ2 + r1θ1
(r2θ2 − r1θ1) (5)

where Jp1 , Jp2 , r1, r2, θ1 and θ2 are the driving and
driven pulley inertias, pitch radii and angular positions,
respectively. Tv,in and Tv,out are the input and output
torques to and from the pulleys. Ts and Tt are the
belt tension both on the slack and tight side. F0 is the
pre-tension force, A is the cross sectional area of the belt, E
is the Young’s modulus of the material and C is the distance
between pulley centres as shown in Figure 2. The belt itself
is considered without inertia. By substituting equations (4)
and (5) in equations (2) and (3) we get,

Jp1 θ̈1

= Tv,in + r1(EA+ F0)(
r2θ2 − r1θ1

lc − r2θ2 + r1θ1
− r1θ1 − r2θ2
lc − r1θ1 + r2θ2

) (6)

Jp2 θ̈2

= r2(EA+ F0)(
r1θ1 − r2θ2

lc − r1θ1 + r2θ2
− r2θ2 − r1θ1
lc − r2θ2 + r1θ1

)
+ Tv,out

(7)

By linearising the model in equations (6) and (7) at
specified points, θ10 = 0 and θ20 = 0, we have,

Jp1 θ̈1

= Tv,in − 2r21(EA+ F0)θ1
lc

+
2r1r2(EA+ F0)θ2

lc

(8)

Jp2 θ̈2

= Tv,out +
2r1r2(EA+ F0)θ1

lc

− 2r22(EA+ F0)θ2
lc

(9)

4.3 Load dynamics

The load is an inertia body with following dynamics:

Jlϕ̈l,in = Tl,out − Tl,in (10)

ϕl,in = ϕl,out (11)

where Jl is the load inertia connected to the driven pulley,
ϕl,in and ϕl,out are the input and output load position
profiles, and Tl,in and Tl,out are the load input and output
torques.

4.4 Interface dynamics

The interface equations between dynamics of each
component are as following:

ϕm = θ1 (12)

Tm,out = Tv,in (13)

Tv,out = Tl,in (14)

θ2 = ϕl,in (15)

Tl,out = 0 (16)

4.5 System model

Considering angular position and velocity of the pulleys
as the state variables, we derive the state space model as
following:

A =


0 0 1 0
0 0 0 1

−2r21(EA+F0)
lcJtot

2r1r2(EA+F0)
lcJtot

0 0
2r1r2(EA+F0)

lcJout
−2r22(EA+F0)

lcJout
0 0



B =


0
0

KT

Jtot

0

 , C =
[
0 1 0 0

]
, D = 0
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where Jtot and Jout are the total inertia on the motor side
and load side as:

Jtot = Jm + Jp1

Jout = Jp2 + Jl

5 Physical design constraints

The constraints on the physical design components are
related to mechanical properties of each component without
impact of dynamic behaviour models. These constraints
include both linear and nonlinear models.

5.1 Physical design of DC-motor

The design model for DC-motor is adopted from Roos
(2007) as following,

Tm,rated ≥ Trms (17)

Tm,rated = Cmlmr
2.5
m (18)

where Cm is the motor type constant, lm is the motor’s
rotor length and rm is the radius of stator. The motor’s
RMS torque is derived as,

Trms =

√
1

τ

∫ τ

0

((Cmj lmr4m + J0)ϕ̈m + Tm,out)2dt (19)

where Cmj is a constant for specific machine type and
is derived from a reference motor of the same type, τ is
the cycle time of the output profile, i.e., the time period
during which the output profile is valid, and ϕ̈m is the
angular acceleration of the motor output. Tm,out is the
output torque of the motor and J0 is the inertia of motor’s
shaft and bearings. Combining equations (17)–(19) results
in equation (20).

Cmlmr
2.5
m

≥

√
1

τ

∫ τ

0

((Cmj lmr4m + J0)ϕ̈m + Tm,out)2dt
(20)

5.2 Physical design of belt drive

Physical design model for the belt drive considers designing
a feasible belt drive structure with a suggested driven
pulley’s radii as optimisation variable. The angle of
wrap for smaller and larger pulleys are θS and θL,
respectively (as shown in Figure 2), and are calculated
using equations (21) and (22).

θS = π − 2sin−1

(
r2 − r1
C

)
(21)

cθL = π + 2sin−1

(
r2 − r1
C

)
(22)

The total length of belt is Lb that is derived as following
(Carvill, 1993):

Lb = 2
√
(C)2 − (r2 − r1)2 + r2θL − r1θS (23)

The length of belt segments A and D is lc (shown in
Figure 2), that is used in dynamic behaviour model and is
derived using equation (24).

lc =
√

(C)2 − (r2 − r1)2 (24)

Designed timing belt using the above equations should
handle the pre-tension force, F0, that is implemented in
dynamic equations. For the tension forces, we have,

Tt − Ts = Fout (25)

By substituting equations (4) and (5) in equation (25), we
derive expression (26) for Fout,

Fout = (EA+ F0)
2lc(r2θ2 − r1θ1)

l2c − (r1θ1 − r2θ2)2
(26)

By solving equation (26) for (r1θ1 − r2θ2), we obtain,

r1θ1 − r2θ2

=
lc(EA+ F0) + lc

√
(EA+ F0)2 + F 2

out

Fout

(27)

By substituting equation (27) in equations (4) and (5), we
get,

Ts =
F0 − Fout − EA−

√
(EA+ F0)2 + F 2

out

2
(28)

Tt =
F0 + Fout − EA−

√
(EA+ F0)2 + F 2

out

2
(29)

The required area for the belt is determined by
equation (30),

Ts,t = A1,2σy (30)

where σy is the yield stress of the belt, and by solving each
equation for the area we derive,

A1 =
4(σy+E)F0−2Fout(2σy+E)

8σy(E+σy)

+

√
(−4F0(σy+E)+2Fout(2σy+E))2+32F0Foutσy(σy+E)

8σy(E+σy)

(31)

A2 =
4(σy+E)F0−2Fout(2σy+E)

8σy(E+σy)

+

√
(−4F0(σy+E)+2Fout(2σy+E))2−32F0Foutσy(σy+E)

8σy(E+σy)

(32)

Since σy is very small in comparison with E, for simpler
computations, we can consider, σy + E ≈ E and 2σy +
E ≈ E.

A1 = 2F0−Fout

4σy

+

√
(−4F0(σy+E)+2Fout(2σy+E))2+32F0Foutσy(σy+E)

8σy(E+σy)

(33)

A2 = 2F0−Fout

4σy

+

√
(−4F0(σy+E)+2Fout(2σy+E))2−32F0Foutσy(σy+E)

8σy(E+σy)

(34)

The maximum of these areas is considered in design
analysis.
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5.3 Detailed design of the belt drive

Detailed design of the belt aids in obtaining a reasonable
optimum result (according to mechanical engineering
principles) and reduces the number of free optimisation
variables which yields a computationally less expensive
design. When a belt drive system is initially pre-tensioned
to F0, a free body analysis gives the relationship as in
equation (35) (Collins et al., 2009).

F0 =
Ts + Tt

2
(35)

A slip equation for a moving belt based on equilibrium
requirements is as given in equation (36),

eµθS =
Tt − Fc

Ts − Fc
(36)

where µ and Fc are the coefficient of friction and
centrifugal-force-induced belt tension (inertia force),
respectively. The inertia force may be also expressed as
follows,

Fc =
Mbv

2

g
(37)

where Mb, v and g are the unit weight of belt in N/m, belt
velocity in m/s and gravitational acceleration approximated
to 9.81 m/s2. Mb can be calculated as following,

Mb = bbelt Tbelt Msw (38)

where bbelt, Tbelt and Msw are the belt width, thickness
and specific weight factor in N/m3, respectively. Msw

is derived from standard belt specifications presented by
Collins et al. (2009). Using the above equations and by
replacing the equivalent of Fc in equation (36), the allowed
width of belt, bbelt, is calculated.

6 Control design

An optimal pole placement control with two structures are
presented and applied on the design case as following. This
control method is simple enough and a common approach
in industry.

6.1 State feedback control

A state feedback control with sensor quantisation model is
depicted in Figure 3.

The open loop system is as follows,

ẋ = Apx+Bpup

y = Cpx
(39)

Figure 3 Pole placement control (see online version
for colours)
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Using this structure, the sensor quantisation can be applied
on any of the state variables. The control system is derived
as a gain, kc, and the control output is yc = kcuc (uc is the
sensor output). When the sensor quantisation is applied on
the first state (sn1), we have,

uc = [q(x1);x2;x3;x4] (40)

where q is the quantisation model which was neglected
in previous studies (Malmquist et al., 2014, 2013), as one
main aspect of a control system. Since the implementations
are done by digital computers, therefore, the sensor
quantisation model should be considered in the design
process. Quantisation can be modelled using the floor
function that quantises the value of input for the sensor. The
sensor model, q(x), is adopted from Ferrante et al. (2014)
and presented as follows,

q(x) = δ
⌊x
δ

⌋
(41)

The plant input is up = kpr − yc (kp is a proportional
feed-forward control gain). By substituting equation (40) in
up, we have,

up = kpr − kc


q(x1)
x2
x3
x4

 (42)

By simplifying further, the closed loop system is obtained
as,

ẋ = Apx+Bp

kpr − kcx− kc


q(x1)− x1

0
0
0




y = Cpx

(43)

We consider a function ψ(x) (Ferrante, 2015) as in
equation (44),

ψ(x) : Rn → Rn

x 7→ q(x)− x
(44)

For every x ∈ Rn and i = 1, 2, ..., n, we have,

| q(xi)− xi |≤ δi (45)

where q(xi)− xi is a time variant vector and at this stage
we do not have information about it. In order to avoid
unnecessary simplifications of the method by applying
algorithms that reduce the impact of δ, we let Simulink



86 F. Rahimi

to solve the above model. Therefore, a Simulink model
is integrated inside constraint function in optimisation
algorithm.

By implementing sn2 in the configuration, i.e., applying
quantisation on the second state, we derive the closed loop
system as,

ẋ = Apx+Bp

kpr − kcx− kc


0

q(x2)− x2
0
0




y = Cpx

(46)

The sensor quantisation in estimating states acts as a
measurement noise and disturbs the tracking performance of
the reference, therefore, a proportional feed-forward control
gain, kp, that is defined to be an optimisation variable is
applied which assists in reducing the rise time and steady
state error. The response achieved with the above structure
is based on the assumption of full-state feedback, which
is not necessarily valid. To address the situation where not
all state variables are measured, a state estimator must be
designed.

6.2 Observer-based control

An observer control provides an estimate of the internal
state of a given real system, from measurements of the input
and output of the real system. In this structure, the sensor
quantisation model should be applied on the output of the
system. An observer-based optimal pole placement control
is designed by defining the desired pole locations for both
the state and observer control as optimisation variables.
This method allows estimation of the physical states of a
system that cannot be observed/measured. The structure of
controller is depicted in Figure 4.

Figure 4 Observer-based pole placement control (see online
version for colours)
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The system is continuous-time with a quantised output as
given in equation (47),

ẋ = Apx+Bpup

y = q(Cpx)
(47)

We assume that the system given in equation (47) is
controlled with a dynamic output feedback control of the
form in equation (48).

˙̂x = Apx̂+Bpu+ Lo(y − Cpx̂)

up = kp r − kc x̂
(48)

Tracking a non-constant reference is called a
servomechanism problem, therefore, we added a feed
forward gain, kp, to assist the tracking performance. This
system structure is based on a Luenberger observer (Ellis,
2012), and the state x̂ is considered as an estimate of the
state x. Hence, the closed-loop system can be written as,

ẋ = Apx+Bpup

˙̂x = (Ap −Bpkc − LoCp)x̂+Bpr + Loq(Cpx)
(49)

The continuous time closed loop system is discretised
using calculated sampling time with respect to the specified
constraints and objectives in the following section. Discrete
nature of the plant, quantisation in the sensor, sampling
and computational delay in the digital controller cause
nonlinearity. The nonlinearity limits control performance
and to some extent the cost and size of the system which
leads to a challenging structural and control design method.
Hence, keeping the model and requirements as simple as
possible while capturing the main behaviour and properties
of the system is crucial in design analysis.

7 Multi-objective optimisation

Multidisciplinary design optimisation of mechatronic
systems is a trade-off between optimal objectives,
control performance, energy efficiency, cost and safety.
Complexity in designing mechatronic systems requires to
dig into details in the used parameters. In this paper, a
multi-objective optimisation approach is used that considers
three objectives from the three engineering disciplines.
These objectives are: minimising volume of the physical
system, vtot, minimising the sampling frequency, ws, and
maximising the sensor resolution, δ.

Since the continuous time closed loop system and
defined load profile are sampled and discretised, it is
important to have a good choice of sampling time in
the approach. Clearly, a shorter sampling time gives
the advantage of better performance (closer to the
corresponding continuous time system). On the other hand,
a longer sampling time gives the advantages of lower
computational load and may reduce numerical challenges.
Therefore, to address this trade-off issue the sampling
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frequency is defined as one of the optimisation objectives.
The sampling time is derived using equation (50),

Ts =
2π

cbwb
(50)

where wb is the fastest frequency of the closed loop system
and cb is a frequency coefficient that is defined to be a real
valued optimisation parameter in the range of [2 . . . 30]. The
sampling frequency, ws, is evaluated using equation (51),

ws =
2π

Ts
(51)

To avoid the aliasing effect in sampling of signals, we must
set an optimisation constraint on the sampling time, Ts. A
good sampling time should be in a defined range such as in
equation (52).

5wc 6
2π

Ts
6 100wc (52)

where wc is the desired bandwidth of the continuous time
closed loop system.

Defining the sampling frequency, ws, as the second
optimisation function aims at reducing computational
costs. On the other hand, a too low sampling frequency
deteriorates control performance. To avoid this problem,
control performance constraint(s) are considered. Integrated
square error (ISE) and maximum error (max(er)) are
defined as control constraints on the optimisation problem.

ISE =

√√√√ m∑
0

(rdes − yout)2 (53)

max(er) = max(| rdes − yout |) (54)

where rdes and yout are the desired reference input and the
controlled output, respectively.

To avoid expensive sensors, 1
δ is minimised. On the

other hand, too large δ deteriorates control performance.
Hence, bounding the control constraint, max(er) or ISE,
aids in compensating this fact. Hence, the problem is
formulated to get a less expensive sensor resolution which
can at the same time deliver great control performance
regarding the definition of boundary.

A multi-objective optimisation problem generally is
defined as given in equation (55) where a set of m >
1 conflicting objective functions obji are maximised
(Hoffmeister and Bäck, 1992). The maximisation is to avoid
loss of generality and min{obj(x)} = −max{−obj(x)}.

max obj(x) = [obj1(x), obj2(x), ..., objm(x)]

s.t. gn(x) 6 0; n = 1, ..., N
(55)

where m is the number of objectives, g is a constraint
function, n is the number of inequality constraints and x is
a vector of design variables.

Normally, a single point that minimises all objectives
altogether does not exist. Therefore, Pareto optimality
is usually used to extract solutions for multi-objective
optimisation problems. In the Pareto optimal set, it is not

possible to improve one objective without deteriorating
the others. A typical solution of Pareto optimisation is a
compromise. Consequently, there is a need to have a proper
definition of a function that yields a reasonable optimal
solution for all of the objectives. Hence, a weighted sum
function is defined as given in equation (56). This function
aggregates the objective values to a single quality measure
(Jakob and Blume, 2014).

f = min(k1 obj1 + k2 obj2 + ...+ km objm) (56)

where k1, k2, ..., km are the Pareto front weight factors
and we have, k1 + k2 + ...+ km = 1. Considering the
definition of weight factors, if k1, k2, ..., km are positive,
minimising f yields in Pareto optimality solution (Coelingh
et al., 2002).

7.1 Weighted sum method

Defining uneven weights for the weighted sum function
given in equation (56) yields a non-optimum system which
is only optimum with respect to one of the objectives that
has higher weight. However, it is still difficult to decide the
weights to indicate the relative importance of each objective
due to the difference in objectives magnitudes. One proper
method to have even weight factors is to normalise the
objectives. This is done using equations (57) and (58)
for minimising, and maximising objectives, respectively
(Grodzevich and Romanko, 2006).

objnormi =
max(obji)− obji

max(obji)−min(obji)
(57)

objnormi = 1− max(obji)− obji
max(obji)−min(obji)

(58)

The system is optimised to reduce physical size, obj1 =
min(vtot), implementation cost, obj2 = min(ws), and
hardware cost, obj3 = min( 1δ ). The final optimisation is
evaluated for k1 = k2 = k3 = 1

3 .

7.2 Nominal load profile/requirement on the system

To dimension and optimise a system, there is a need to
have a clear definition of the requirements in system which
is a load profile. The load profile gives the required target
which the system should deliver within a tolerance set by an
operator and is a worst case torque and angular speed that
the system should handle. It also represents the reference
angular trajectory for the control loop. The torque and
velocity of the load profile in this paper are known and
derived from a position profile connected to an inertia of
1.1kg/m2 and is sampled during an optimisation run to
evaluate the system. The profile is given in Figure 5.
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Figure 5 Load profile (see online version for colours)
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7.3 System design

The approach is tested on a case study that includes
a DC-motor, connected to the driving pulley of a
belt drive and an inertia as a load connected to the
driven pulley. Some parameters are defined to be fixed
during optimisation run (presented in Table 1) to reduce
complexity of the system and to be able to track the
influence of significant parameters.

Table 1 Fixed parameters

Variables Fixed value Physical definition

rm 0.03 (m) Radius of the DC-motor
r1 0.01 (m) Radius of driving pulley

A few parameters are chosen as free variables to be
designed by the approach as given in Table 2. The
parameter boundaries for physical constraints are defined
based on basic mechanical engineering principles.

Table 2 Design variables

Variables Ranges Physical definition

lm [0.03−0.15] (m) Length of the DC-motor
r2 [0.07−0.25] (m) Radius of driven pulley
bb [0.01−0.1] (m) Width of belt
C [0.5−1] (m) Centre distance of the pulleys
cb [2−30] Sampling rate coefficient
p1 [1−400] Desired closed loop pole
kp [1−600] Proportional control gain
1
δ

[2−2,000]( pulserad ) Sensor factor

The closed loop system has four poles and we defined
the desired pole locations to be [−p1;−p2;−p3;−p4] =
[−p1;−p1 − 10;−p1 − 20;−p1 − 30] to reduce the
complexity of optimiser and computational time. The
system is optimised for defined objectives and constraints,
and a few tests are examined (presented in Tables 3 and 4).
To be noted that the units for objectives in all tests are as
follows; vtot [cm3], ws [ rads ], and δ [ rad

pulse ].

7.4 Results

Comparing numerical results in these tables, it is clear that
a lower (more optimal) sampling frequency is possible with
a more loose definition of control constraint boundaries
which is in line with presented results by Rahimi and
Wikander (2020) (true for both scenarios of sensor
locations, sn1 and sn2). The results for cb show that
the sampling frequency, ws, of the system satisfies basic
requirement for embedded control implementation as being
at least two times the highest frequency of the system.
As the boundary for max(er) increases, derived optimal
value for δ increases which is intuitively correct. Larger
ratio, n = r2

r1
, yields less torque requirement on the motor,

consequently, smaller length of the motor, lm that is in line
with the results achieved by Roos (2007).

From Tables 3 and 4, we see that when sn2 is applied
we have a better resolution (performance-wise) for the
system than when sn1 is implemented; i.e., quantising
the position of first pulley degrades resolution on the
output side. Moreover, when sn2 is applied, better control
performance, max(er), is achieved than when sn1 is
applied. It should be noted that the cost for unity sensors
are not considered in any of the results presented in these
Tables. The analysed behaviour of the system is depicted in
Figure 6.

Figure 6 Patterns generated from system behaviour when sn1

and sn2 are applied (see online version for colours)
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The control performance of the optimal pole placement with
feed forward proportional gain is verified by the position
tracking of the output position. Figure 7 shows tracking
performance for test 1 in Table 4. The control performance
of the optimal control method satisfies the constraint by
adequately tracking the reference input.
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Table 3 Design optimisation when sn2 is applied on the load side (see online version for colours)

Test lm r2 bb C cb max(er) vtot ws δ Ts −p4 kp

1 0.1212 0.127 0.077 0.55 5.0 0.0095 ≤ 0.01 1.29e4 1920 0.0013 0.0033 −384 456.8

2 0.11 0.132 0.070 0.62 3.8 0.02 ≤ 0.02 1.534e4 1510 0.0014 0.0041 −397.4 391

3 0.143 0.099 0.081 0.59 4.1 0.037 ≤ 0.04 9.43e3 1192 0.0018 0.0053 −290.7 402.3

4 0.125 0.11 0.073 0.71 2.7 0.053 ≤ 0.06 1.24e4 927 0.0019 0.0068 −343.3 272.3

5 0.131 0.107 0.082 0.67 3.4 0.078 ≤ 0.08 1.17e4 658 0.002 0.0095 −194.5 193

Table 4 Design optimisation when sn1 is applied on the motor side (see online version for colours)

Test lm r2 bb C cb max(er) vtot ws δ Ts −p4 kp

1 0.1157 0.134 0.0707 0.8 6 0.016 ≤ 0.02 1.86e4 1667 0.0015 0.0038 −277.8 248.5

2 0.117 0.132 0.0718 0.74 5.9 0.036 ≤ 0.04 1.69e4 1600 0.0032 0.004 −271.2 156

3 0.101 0.153 0.074 0.66 3.6 0.054 ≤ 0.06 2.05e4 1126 0.0037 0.0056 −312.8 295.1

4 0.1374 0.103 0.0752 0.79 2.9 0.08 ≤ 0.08 1.17e4 870 0.0051 0.0072 −300 213

Figure 7 Trajectory tracking performance (see online version
for colours)
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7.5 Weighted sum factors impact on the co-design

To evaluate the final solution of the system, different
weight factors considering k1 + k2 + k3 = 1 are applied
on normalised objectives in test 5 (Table 3) and are
shown in Table 5. As given, test 1 has higher weight
on the volume of system, vtot, and therefore, volume is
more optimal (minimised) than the two other objectives
compared to test main. Test 2 gives higher importance
to the sampling frequency, ws, hence the results prioritise
minimising sampling frequency rather than the two other
objectives compared to test main. In test 3, resolution,
δ, has higher weight and the method results in better
(maximised) solution for δ.

Table 5 Results of the co-design for different weight factors
(test 5 Table 3) (see online version for colours)

Test k1 k2 k3 vtot ws δ

main 1/3 1/3 1/3 1.17e4 658 0.002

1 0.8 0.1 0.1 9.87e3 887 0.0019

2 0.1 0.8 0.1 1.43e4 571 0.002

3 0.1 0.1 0.8 1.2e4 693 0.0022

Comparing these results verifies the significant importance
of weighted sum factors. In order to derive a final solution
that is optimum without deteriorating any objective or
giving high priority on just one, these factors should have
exact the same weights, i.e., equal numerics.

7.6 Detailed physical design of the system using an
observer-based control

Using the detailed physical design method presented in
Subsection 5.3 for the belt drive, the number of free design
variables is reduced. Therefore, the complexity of system
analysis and evaluation is decreased. Defined fixed and free
variables are given in Tables 6 and 7, respectively.

Table 6 Fixed parameters

Variables Fixed value Physical definition

rm 0.03 (m) Radius of the DC-motor
r1 0.01 (m) Radius of the driving pulley
Tbelt 0.002 (m) Thickness of the belt

Table 7 Design variables

Variables Ranges Physical definition

lm [0.03−0.12] (m) Length of the DC-motor
r2 [0.05−0.15] (m) Radius of driven pulley
C [0.5−1] (m) Centre distance of the pulleys
cb [2−30] Sampling rate coefficient
kp [1−300] Proportional control gain
1
δ

[10−1,000] ( pulserad ) Sensor factor

An observer-based control is used with this design method
and the desired pole locations for both the state feedback
and observer are defined to be at [−p1;−p1 − 5;−p1 −
10;−p1 − 15]. To track the impact of poles on the physical
and control design, a number of optimisations with different
fixed values for p1, and fixed boundaries for max(er)
and ISE are executed. The change for physical properties
of the system (volume) with respect to the dynamic
specifications is investigated.
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As it is depicted in Figure 8, faster poles put higher
demand on actuator effort [in line with presented results
by Malmquist et al. (2014)]. The number of free design
variables is reduced by using the detailed physical design
approach for the belt drive component, and accordingly,
the volume of entire system is in a reasonable level based
on basic mechanical engineering principles. The sampling
frequency of the system and sensor resolution have similar
patterns as presented by Rahimi and Wikander (2020), i.e.,
as the boundary for control constraints, max(er), and ISE,
increase, the optimisation allows larger solution space for
both of the objectives (decreased ws and increased δ).

Figure 8 System behaviour analysis (see online version
for colours)
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8 Conclusions

Neglecting the influence of control implementation factors
on co-design optimisation of mechatronic systems might
result in over-dimensioning in one of the involved
engineering domains. In this paper, a multidisciplinary
co-design approach is presented to include some of the
gaps in closed loop system design. The method integrates
physical design, control design, and control implementation,
simultaneously. An optimal pole placement with two
structures; state feedback and observer-based design is
implemented. The optimisation problem is formulated to
minimise volume and sampling frequency, and maximise
sensor resolution. The approach is applied to a design case
including a DC-motor, a belt drive and a load component
and a few tests are examined to investigate relations
between physical, control and implementation parameters.
The supported software framework is extended to cover
physical and control design aspects, and the coupling
between implementation and co-design is considered. The
system is optimised and the results are compared for
two scenarios; when the sensor quantisation is applied on
the first and second state variables, respectively. Control
performance is checked over output of the load component
and it is evaluated by tracking a reference signal. The
objectives are computed for different fixed boundaries of
the control constraints. The optimum system solution is

evaluated for different weight factors of a scalar weighted
sum function using derived Pareto front set and the impact
of each parameter on the objectives are studied.
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