Influence of capacity and energy density of lithium-ion battery on thermal reaction during high rate charging
by Xiaogang Wu; Haoqi Guo; Jiuyu Du
International Journal of Vehicle Design (IJVD), Vol. 83, No. 1, 2020

Abstract: NCM ternary lithium-ion batteries have been widely used in electric vehicles. However, the negative impacts of increased energy density cannot be ignored, particularly the heat generation from batteries during high-rate charging. Further analysis is required on the heat generation problem in high energy density NCM batteries for safety. In this study, the thermophysical parameters of batteries with different energy densities are tested, then a heat generation model during charging is constructed based on Bernardi equation. Furthermore, two NCM batteries with different energy densities are selected to analyse the heat generation when the charging rate varied from 1 C to 4 C. The results show that under the same charging rate, heat generation in a higher energy density NCM battery is more evident, and the average heat generation rate can reach 2.36 times that of a lower one. In addition, factors that cause the increased heat generation in NCM batteries are quantified.

Online publication date: Thu, 06-May-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com