Path tracking controller design for autonomous vehicle based on robust tube MPC
by Chuanyang Sun; Han Dong; Xin Zhang; Cong Geng
International Journal of Vehicle Design (IJVD), Vol. 82, No. 1/2/3/4, 2020

Abstract: A robust tube MPC controller based on tube-division with a linear time-varying (LTV) model is proposed for autonomous vehicle path tracking. To reduce the conservativeness, a novel offline method is designed to calculate the tubes by dividing the original N-steps invariant sets into sequences of tighter candidate tubes. The propagation limits of the vehicle time-varying parameters within a prediction horizon are used in the division to ensure each candidate tube contains any state trajectory starting at its origin. A corresponding tube will be selected instead of being calculated online at each sampling instant in terms of vehicle states, which makes a more efficient online computation. The results of the simulation show the improved performance of the proposed robust tube MPC controller.

Online publication date: Thu, 01-Apr-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com