Performance assessment of nanostructured thermoelectric cooler
by Mustafa Asker
International Journal of Exergy (IJEX), Vol. 34, No. 3, 2021

Abstract: In this research study, 1D numerical simulation for p-type (Bi0.2Sb0.8)2Te3 nanocomposite thermoelectric cooler (TEC) is conducted by utilising a finite volume method. The model is verified through a comparison with the published analytical data and good agreement is observed. Multiwall carbon nanotube (MWCNT) is used to enhance the thermal characteristics of TEC which is represented by the figure of merit. In this context, three separate scenarios are developed for different MWCNT compositions in order to investigate the influence of various design parameters on the performance of TEC. It is found that the most efficient performance is achieved for nanocomposite containing 0.12 wt% of MWCNT with a figure of merit equal to 1.4. Moreover, the maximum value of exergy efficiency for this nanocomposite is found to be 0.195 at a current value of 0.7 A.

Online publication date: Wed, 31-Mar-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Exergy (IJEX):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com