
Int. J. Embedded Systems, Vol. 14, No. 2, 2021 108

A TAO-based adaptive middleware for pervasive
computing

Yanhui Guo, Zhenmei Yu*, Fuli Qu and Hui Liu
School of Data and Computer Science,
Shandong Women’s University,
Ji’nan, Shandong, China
Email: guoyanhui03@163.com
Email: zhenmei yu@sdwu.edu.cn
Email: qufuli23@163.com
Email: 972648894@qq.com
*Corresponding author

Abstract: Over the past years, a considerable amount of effort has been devoted, both in
industry and academia, towards the development of innovative applications for the internet of
things (IoT). An important challenge of IoT application is to adapt to dynamic environments,
which can be modified at runtime considering the emergence of other requirements. To address
this issue, pervasive computing can provide us with a good solution. Aiming at the environments
which are open, dynamic and heterogeneous, we propose an adaptive middleware named
PAmiddleware. PAmiddleware is service-oriented, context-aware, and supported by QoS. The
architecture of PAmiddleware is based on TAO which is a standard-based, CORBA middleware
framework. Meanwhile, we present a model for context awareness to allow the adaptation
and give a modelling method of context description for context resource. We also propose an
adaptive strategy which uses a genetic algorithm for optimisation. The proposed model can well
meet the needs of pervasive computing, and provide more convenient service.

Keywords: pervasive computing; middleware; components; context awareness; adaptive.

Reference to this paper should be made as follows: Guo, Y., Yu, Z., Qu, F. and Liu, H.
(2021) ‘A TAO-based adaptive middleware for pervasive computing’, Int. J. Embedded Systems,
Vol. 14, No. 2, pp.108–116.

Biographical notes: Yanhui Guo received his BS in Information Management and Information
System from the Xi’an University of Finance and Economics, in 2006, and MS in Computer
Software and Theory from the Shaanxi Normal University, in 2009. Since 2009, he has been
with the School of Information Technology, Shandong Women’s University where he is currently
a Senior Lecturer. His research interests include middleware and machine learning.

Zhenmei Yu received her MS from the School of Management Science and Engineering,
Shandong Normal University. Currently, she is a Professor at School of Data and Computer
Science, Shandong Women’s University. Her main research interests include machine learning
and artificial intelligence.

Fuli Qu received her Master’s in Computational Mathematics from Shandong University. She
is an Assistant Professor at the Institute of Data Science and Computing. Her research focuses
on numerical methods of differential equations.

Hui Liu graduated from the Shandong Normal University, his major is Computer Science and
Technology. His research interests include machine learning and intelligent optimisation.

1 Introduction

Owing to the growing popularity of mobile applications and
IoT, the era of pervasive computing has come. Pervasive
computing environment is an integration of various kinds
of technologies, wherein heterogeneous objects are different
with capabilities of sensing, communication, computation,
storage. Pervasive devices collect contextual information

and run local computation. Therefore, applications
in pervasive computing environment need to provide
different service according different devices (Kakousis
et al., 2010). Al-Khawaldeh et al. (2019) introduce
knowledge-based auto-configuration ubiquitous robotics
for smart home environments, which utilises the Sobot
to achieve auto-configuration of the system. Because
devices also want to perceive the dynamic environment

Copyright © The Author(s) 2020. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under
CC BY license. (http://creativecommons.org/licenses/by/4.0/)



A TAO-based adaptive middleware for pervasive computing 109

at runtime, to satisfy their requirements. However, these
context-aware applications are very difficult to develop and
reuse (Knappmeyer et al., 2013). To support a dynamic
pervasive computing environment and simplify software
development, adaptive middleware can be applied, which
provide ubiquitous access to context-aware information.
Adaptive middleware technology has given a great impulse
to the development of mobile applications and IoT.
For pervasive computing, a variety of resources are
heterogeneous, dynamic and open. Hence, the middleware
needs to be elastic to dynamically adjust their behaviour
according to the changing context, to adapt to the different
resources and requirements of service.

Generally, pervasive computing platforms are based
on service-oriented computing, a compositional approach
where applications are built through composition of
independent software elements (Chollet et al., 2015). A
number of services-oriented platforms related to pervasive
computing applications has been developed over the years,
such as PCOM (Becker et al., 2004), iCasa (Escoffier
et al., 2014). While the diversity of these platforms
prevents services and applications developed on different
middleware platforms. So, a middleware is needed to deal
with various forms of communication, context modelling,
interoperability. Several researchers have attempted to
introduce adaptations into pervasive computing system. And
there have been many attempts to introduce the notion
of adaptation into pervasive computing system (Weyns
et al., 2012). Previous studies focused on discovery and
connection strategies. Discovery-based approaches have
been explored to discover services and resources. Jaeger
et al. (2007) introduced the self-adaptation to an object
request broker. The broker can adapt dynamically to a
better efficiency on the application and the network layer.
Ben Mokhtar et al. (2006) proposed a web services
discover method which can identify service semantic
and match it. Connection-based adaptation approach
allows communication between software components with
connectors or unified interfaces. Garlan et al. (2004)
proposed a framework called Rainbow which provided
a language for specifying self-adaptation. Its method of
specifying adaptation is worth learning. Software-based
approach enables software to be dynamically modified in
accordance with changes. Later, computational reflection
aspect-oriented programming (AOP) enables software
to be open to dynamically defining itself without
compromising portability or exposing parts unnecessarily.
Then, AOP was used for adaptation of applications. Then,
context-awareness is also the main aspect of adaptive
middleware research, such as Forkan et al. (2014),
Vahdat-Nejad et al. (2013) and Freitas et al. (2015). Nocera
et al. (2019), focusing on the heterogeneity of different
objects, proposed a context-aware middleware based on
fuzzy rule. They implemented and validated the proposed
model on a real IoT middleware in a smart home scenario.
Djeddar et al. (2017) proposed a context-driven composition
for mobile applications.

Belcastro et al. (2019) designed a service-oriented
middleware, called Geocon. Geocon provided a

geocon-service for storing, searching and selecting metadata
obout users, resources and place of interest. Finally, Geocon
was evaluated on a real world application. Eibel et al.
(2018) proposed an energy-aware middleware platform,
which adjusts the system configuration to achieve the
best energy. Also, some papers mainly study adaptive
strategy (Portocarrero et al., 2017; Sun and Satoh, 2016).
For complex engineering in automotive or aerospace,
Beni et al. (2019) proposed a policy-driven adaptive
middleware, which supports smart cloud-based deployment
and execution of engineering workflows.

Nevertheless, most pervasive computing middlewares
lack quality of service (QoS). QoS has become the
main measurement of software performance. For complex
pervasive computing environments, it is necessary to
clarify the QoS indicators in different devices. Usually,
QoS includes user and application expectations relative
to network, devices, and data. Agirre et al. (2016)
proposed a QoS aware middleware as a support for
dynamically reconfigurable component-based applications.
This middleware is component-based and driven by
a QoS aware self-configuration algorithm. Finally, this
platform was deployed over an automated warehouse
supervision system. Ouedraogo et al. (2018) presented
a run-time pluggable QoS management mechanism for
middleware platform. Their approach consists in the
dynamic, autonomous, and seamless deployment of QoS
management mechanisms, which can improve QoS of
middleware services. Lately, a QoS aware middleware was
proposed by Mukherjee et al. (2020) for mobile edge
computing in opportunistic internet of drone things. They
analysed parameters like message transfer latency, overhead
ratio, message delivery changes under several QoS values,
which enhances the reliability of middleware.

In this paper, we attempt to design a middleware
platform for pervasive computing. By analysing above
projects, component-based and service-oriented middleware
technologies in pervasive computing are commonly used
and effective. This paper introduces the QoS mechanisms
as part of the context awareness, which better meets
the adaptability of the middleware, facilitates application
development. The main contributions are listed as follows:

• We designed an adaptive middleware, called
PAmiddleware, which is based on real-time platform
TAO. We supplemented three aspects, including
service mapping, adaptive mechanism and context
manager, which can make up for the shortcoming of
TAO. We also added QoS mechanism into TAO.

• For context-awareness, we gave an approach to
describe context information. A three tuple was
applied for context resources, and a XML description
was used for deployment in applications.

• We also proposed an adaptive mechanism, introduced
the process of adaptation of middleware. An
adaptation strategy based on particle swarm
optimisation (PSO) was implemented in our model.



110 Y. Guo et al.

The rest of this paper is organised as follows. In Section 2,
we introduce the design principles of our middleware
platform. Section 3 describes the details of framework
structure. Section 4 presents context description in our
framework. And the process of adaptation is shown in
Section 5. Finally, we conclude the whole paper in
Section 6.

2 Principle of design

In pervasive computing, resources are inadequate and
changing. If we want to let pervasive computing offer
reliable performance required by the current workload, it
is necessary for the application to have the ability of
self-adaptation. QoS is widely used strategy for meeting the
requirement in application. Traditionally, QoS mechanism
has been added to application as a logic function,
which is easy to confuse QoS with function attribute
of applications. This will increase the complexity of the
application, increase the difficulty of management, and
weaken the reuse of the application. Hence, we set QoS
into middleware layer, making the QoS separated from the
application, to ensure the reconfiguration at runtime.

Component technology can improve the reusability
of software, reduce the cost of software development,
and enhance its reliability and the maintenance of the
application. Component technology is widely used in
software development. Service-oriented architectures has
become an incontrovertible paradigm for the development
of applications in pervasive computing environments,
as they enable publishing and consuming heterogeneous
networked software and hardware resources (Ben Mokhtar
et al., 2006). In this paper, the component technology and
service combination are adopted in our middleware model.

Our middleware model is an open, adaptive,
component-based, service-oriented architecture. It has QoS
management component, and is able to support different
levels of QoS requirements. There are four requirements
in the middleware architecture in order to adapt to the
development and application of pervasive computing.
Therefore, a good middleware platform needs to have the
following characteristics.

• Component-based services: to simplify the
development and maintenance of middleware. This is
also the main way to solve the reusability, readability,
and cost of software development.

• Independence: includes the various steps of the
development process (design, deployment, running).
The independence also means that the functional
attributes and QoS are independent of each other.

• Openness: the components of middleware services
and applications can be deployed or replaced
according to the requirement. This is good for adding
new functions or removing obsolete functions easily.

• Context awareness: the middleware should be aware
of the changes in the context and make the

appropriate processing. Context awareness is an
essential element of pervasive computing middleware,
especially for adaptive middleware.

In this paper, we introduce the concept of component
service. Component service has the following
characteristics:

• Component service has two forms: atomic component
service, or composite component service.

• Atomic component service is independent, and it is
implemented by atomic component. It is the smallest
unit to be invoked by an application.

• Composite component service is composed of one or
more atomic components, or composite component
services else. There are not only functional
dependencies among these atomic component service,
but also QoS non-functional dependences.

In addition, we design the context model to adapt to
the environment of pervasive computing. The model uses
extensible markup language (XML) to describe. QoS
informations are used as context profile.

3 Architecture of PAmiddleware

This section describes the structure of our proposed
adaptive middleware. Firstly, we introduce the idea of
design. Then, we improve the TAO middleware platform
and propose an adaptive middleware. Our middleware
platform support context-awareness and QoS, which can
deal with the changing environments. Finally, we described
the extension mechanism we proposed in detail.

3.1 Idea of design

This adaptive middleware we designed is called
PAmiddleware (pervasive adaptive middleware), which
provides services by the creation and combination of
components. The logic type is used, whose configuration
parameters and QoS requirements are specified by the users.
As an abstract type, it has no specific implementation.
PAmiddleware is responsible for positioning and
instantiating the logical type, and also responsible for
passing parameters between them. Application developers
can use middleware only if they know the logical type
of component and its configuration parameters in the
middleware.

In the PAmiddleware, component service is divided into
three steps (design, deploy, runtime phases), as shown in
Figure 1. In the design, the type of component service is
used. In the deployment, component service is described
as a plan, which way is used to achieve the service
type. In implementation of services, it implements the
service, in accordance with the planning of the deployment
phase. Application developers only need to specify the
type of component service. The other is completed by



A TAO-based adaptive middleware for pervasive computing 111

the middleware. This makes declarations, deployments, and
operations separatedly, which is in line with the software
development specification.

PAmiddleware is an open architecture, providing user
interfaces and kernel interfaces. Its core services are
composed of lifecycle management, adaptive management
of service composition, and hooks for QoS mechanisms.
When users want to get an application instance from the
PAmiddleware, you should tell the QoS request to the
PAmiddleware. The PAmiddleware makes a plan for your
application. Then it constructs service according the plan.
Finally, the PAmiddleware dynamically adjust the plan for
the changing context.

Service, as a function unit, is composed by a component
or more components. In this paper, we call it component
service, and call component as service component. Service
works as shown in Figure 1.

Figure 1 The deployment of component service (see online
version for colours)

3.2 Architecture of TAO-based PAmiddleware

The following section describes the architecture of our
proposed middleware. It also is an improved version of a
middleware model that we have done before.

TAO is a freely available, open-source, and
standards-compliant real-time C++ implementation of
CORBA based upon the ACE. It attempts to provide
efficient, predictable, and scalable quality of service (QoS).
However, it does not support the context management
and adaptive mechanisms of management. This cannot
meet the requirements of pervasive computing. This paper
extends the TAO for three aspects (as shown in Figure 2),
including service mapping, adaptation mechanism, and
context manager. These extensions make up for the lack of
TAO, and improve its performance.

• Service mapping mechanism: mainly responsible for
combination between the application and TAO,
package, and classification. It maps from the service
request to the service implementation. The service
mapping mechanism is also a container to update,
delete and add components.

• Adaptive mechanisms: responsible for the dynamic
mediation of the application during operation. It
includes the configuration of the service request, as
well as the reconfiguration in the runtime. It also can
order various service contracts, according to the
context information.

• Context manager: responsible for management on
context information, including acquisition, the
integration, as well as classification and storage. We
can create a different latch of context management so
that we can flexibly manage context.

Figure 2 The architecture of TAO-based adaptive middleware

Figure 3 The architecture of extension mechanism

3.3 Architecture of extension mechanism

In this part, we mainly introduce the extension of TAO.
The architecture of the extension is shown as Figure 3.
The extension is composed of service mapping mechanism,
adaptive mechanism and context manager. Context manager
provides the same interfaces to the adaptive mechanism.
The adaptive mechanism monitors the changing context,
make a plan, and then take the plan to the service
mapping mechanism. The service mapping mechanism is
as a container, managing components for encapsulation,
classification and linking.



112 Y. Guo et al.

3.3.1 Context manager

Context awareness is one of the key technologies in
pervasive computing. It generally has three steps for context
to gather, to storage and to model.

In this paper, resources and context manager are
introduced, to accomplish the integration between
physical space and information space, which shield the
complexity. They provide unified interface of resources
and environment context. According to different types of
resource context information, it is divided into different
types. Each type has its own context and resources bolt,
to use in your applications. Collection, integration, and
storage of the context in classifications are achieved by
gatherers, translator, and memory.

a Resource context manager: mainly for management of
the resource context (reference on OMG
classifications and definitions of resources), including
the storage and extraction of resource information,
implementation of resource interface, and resources
latch and management on creation and deletion.

b Environment context management: management of the
context information, including collection, extraction,
and integration for information, such as user’s
location, temperature, humidity, etc. At the same time,
context manager should manage on link among
different sensors, as well as on context of the
implementation of the interface. Modelling and
storage of context information also are realised by this
part.

In order to manage and understand the context information
of pervasive computing, the context can be divided into
three levels, the context node layer, the logical abstraction
layer, and the user layer.

a The context node layer: this is the bottom of pervasive
resource management, involving various types of
pervasive resource node physical, such as a single
sensor node equipment, a variety of software services,
this layer mainly refers to the management and
control. Each resource node has attributes, such as the
access capability of the access terminal, the display
capability or the service function provided by the
software service entity. Its main function is to collect
the original data, and to quantify the original data.

b The logical abstraction layer: virtual resource layer.
This is the middle level of pervasive resource
management, the layer of the layer is the main context
of the semantic representation of context information
is analysed, abstracted can be provided to the user
layer using the context information.

c User level: this is the highest level of pervasive
resource management, involving the establishment of
user service quality model, user preferences and user
context and other functions. In this paper, the context

information is classified according to the different
application fields.

3.3.2 Adaptive mechanism

Shown as Figure 3, adaptive mechanism is composed of
five parts. Adaptive mechanism as a core on pervasive
computing, should regulate by itself according to the
context, to ensure the user’s QoS request. Firstly, when
available resources increase, the service should improve
the level. Secondly, when available resources decrease,
on reduce the level of service of system. It includes the
following sections.

a Context monitor: get and monitor the changes on
context information, completion of the context
acquisition in the service configuration, responsible
for monitoring.

b Service planner: plan the service and get a reasonable
service contract, according to the user s requirement.

c Configuration manager: accomplish service
configuration, according to service contract which is
generated by service planner.

d Reconfiguration manager: adaptation reconfiguration
on mediation process.

e Comparison analyser: in reconfiguration stage, get a
new contract, analyse similarities and differences
between old service contract and the new one, get a
improved component service.

3.3.3 Service mapping mechanism

Service mapping mechanism is the link between extension
mechanism and TAO platform. It is responsible for the
classification and registration of component service. And it
is also responsible for encapsulating TAO components. It
mainly includes the following parts:

a Component service encapsulation mechanism:
encapsulate a variety of component service as a
unified format to use.

b Classification mechanism: reclassify the TAO’s
component depending on application behaviour, in
order to fit for adaptive mechanism.

c Mapping mechanism: responsible for conversion from
component type to component implementation. The
component type is mapped into the corresponding
concrete component, so the function is realised.

Here, we need to understand the concept of
component-based service. A service is a functional unit
provided by the service provider to its customers, which is
composed of one or more components. Component-based
services have the following features:



A TAO-based adaptive middleware for pervasive computing 113

a There are two types of component services: either an
atomic component service or a composite component
service.

b The function of atomic component service is
independent, and its function is used by accessing the
interface of atomic service component.

c The composite component service is provided by the
combination of atomic service components. There are
not only functional dependencies among these atomic
component services, but also QoS non-functional
dependencies.

In order to be dynamically allocated and assembled, the
components of services should have the following features
to provide good service.

• Using the method of aspect oriented programming
(AOP) to provide functional and non-functional
interfaces for outside users.

• Having a good message transmission mechanism. A
good message sending and receiving mechanism
ensures real-time communication between
components.

• Having a self-description interface. By this interface,
we can know the function, running state and resource
utilisation of the component.

• Supporting heterogeneity. In distributed environments,
applications are heterogeneous at different levels,
which must be supported by adaptive components.

4 Context modelling and description

In this section, we mainly describe an approach of context
modelling and a method of context description.

4.1 Context modelling

Context-awareness contains gathering, storage and
modelling of context. Among the above, context modelling
is the key of applying context resource. In order to
fit pervasive computing, we divide context information
into resource context and environment context. Resource
context consists of delay, bandwidth of network, processor,
memory and so on. Environment context consists of user
information, location, time, temperature and other factors
related to physical environment. QoS is as a profile
of context information, including type of information,
maximum, minimum, dimension, and so on.

To integrate with the implementation platform, context
information should be modelled by uniform pattern.
We adopted general resource model (GRM) defined by
Object Management Group (OMG). GRM divides resource
management into resource service and resource service
instance. And resource service instance is an implement
of resource service at runtime. Entity is a basic object in

context description. Entity can be a physical entity or a
logical entity. It is a physical device, component, service or
others related to environment context and resource context.

4.2 Context description

In terms of pervasive computing, context refers to any
information that can be used to characterise entity runtime
state. The entity here can be an individual, a location,
an object in physical or information space. Meanwhile, it
can also be a virtual entity, such as software, network
connection, social relations and so on. The variety of
context information makes the context difficult to use.
The key to solve the problem of context aware service is
how to use a unified description method to describe the
context and how to interact the context information (Da
et al., 2011). So, a unified context description method is
necessary, which is also beneficial to the classification and
storage of context information. Context description must
follow the principle of simplicity and flexibility.

In this paper, the context information is described as
a three tuple CP = (SN,PR,QoS), where SN is the
only identification of context; PR = {P1, P2, . . . , Pn} is
composed of a series of Pi = (A, T, V ), where A is
the attribute name, T is the attribute type, V is the
attribute value, QoS = {Q1, Q2, . . . , Qm} is a series of
Qi = {T,Max,Min}, where T represents the aspect of
QoS concern, Max represents the maximum resource
provided, Min represents the minimum value provided by
the resource.

Extensible markup language (XML) is a source
language that allows users to customise data tags. It has
become the factual standard of data exchange over internet
for its platform and network independence. Besides, XML
has good readability and maintainability. XML is also
an effective tool for dealing with distributed structure
information. So, we adopt XML to describe our context
information.

The following is an example of context information
described by XML language. It is a video stream system
which contains network bandwidth, CPU-occupy, QoS and
so on.

<entity name = “videostream-one”>
<contexts name = “context1”>
<resource-contexts>
<resource-context name = “Network Bandwidth”
value = “100” unit = “MB”/>
<resource-context name = “CPU -occupy”
value = “0.5” unit = “s”/>
<resource-context name = “MemoryFree”
value = “560” unit = “MB”/>
<resource-context name = “MediaType”
value = “MPG”/>
· · ·
</resource-contexts>



114 Y. Guo et al.

<environment-contexts>
<environment-context name = “location”>
<location positionX = “100” positionY = “200”
unit = “km”/>
</environment-context>
</environment-contexts>
<resource-QoSs>

<resource-QoS name = “Network”
max = “20” min = “5” unit = “MB”>
· · ·
</resource-QoSs>

· · ·
</contexts>

· · ·
</entity>

5 Adaptive mechanism of PAmiddleware

In this section, we propose an adaptive strategy for
pervasive computing middleware. We put forward the
concept of service contract. We use PSO algorithm to
optimise the service composition.

5.1 Process of the adaptation

Adaptive mechanism is the core of adaptive middleware,
which indicates the manner in the configuration. In the
implementation of adaptation, service planner plays an
important role. It receives the user’s request, and checks the
context information. Then, it gives a plan of service, and
generates service contract. The planner also has a link with
service configurator and service reconfigurer. Together, they
complete the adaptation.

Figure 4 The process of the adaptation

In this section, service contract is an important concept,
which is a platform-independent specification, including
configuration information, environment dependencies, and
QoS features. A service contract includes four information

elements, service name, service implementation, parameter
configuration, context-dependency.

Another concept we need to know is service type, which
is the interface of adaptive middleware to be used by
application developer. When using services, applications
only need to specify the service type and parameter
information.

When an application uses the middleware service, the
service type and user’s QoS request as the request are
sent to the adaptive middleware layer (PAmiddleware),
and finally achieve the service planner. Service planner
according to the environmental context-dependency and the
current context of the resources generates the configuration
information which meets the QoS requirements of the user.
The entire workflow is as shown in Figure 4.

1 User or application sends a request to the service
planner, and requests the appropriate service.

2 According to the type of request, service planner gets
context through the monitor. It also makes context
monitor to oversee the change.

3 Service planner, according to the context information,
generates service contract.

4 Service planner notifies service configurator to
configure the service in accordance with the service
contract.

5 In the operating mechanism, the component is
instantiated.

6 If the context monitor oversees the context change, it
notify service planner, which should compare the
configuration information in the conflict in the current
context and service contracts.

7 Service planner notifies service reconfigurer to
complete the service reconfiguration.

8 Compare the old service contract and the new one.

9 Go to step 5, component service is instantiated.

5.2 Component service planning method based on
genetic algorithm

It can be seen from Section 3.1 that service planning is
required from component service type to component service
implementation. Service planning is to select suitable
components from many component packages and combine
them into an integrated service under various restrained
conditions. We need to transform composite component
services into atomic component services. In order to obtain
the best solution, we adopted genetic algorithm to service
planning.

In component library, each atomic component
implements an independent function. And atomic
components with the same function but different parameters
are assigned to the same package. The role of genetic
algorithm is to determine the appropriate components
in each package according to the user’s request. Taking



A TAO-based adaptive middleware for pervasive computing 115

Figure 5 as an example, a composite component service
consists of eight atomic component services, each of which
comes from a different package. We will implement service
planning according to different QoS requests. Firstly, we
need to encode the problem, which transforms the feasible
solution space of the problem into the search space that
genetic algorithm can handle. In this paper, we adopt binary
code to encoding genes, which is more suitable for coping
with discrete problems. Suppose N = maxn1, n2, ..., nm,
where ni denotes the number of components in package
i, and N is the maximum value in all packages. The gene
code should be q = [log2(N − 1)] + 1. if N = 16, then
q = 4. The coding of component is from 0000 to 1111. For
Figure 5, a chromosome is composed of eight genes.

Figure 5 The case of composite component service

Another key point of genetic algorithm is to choose
an appropriate fitness function, which can measure the
quality of the solution. In this paper, we mainly
choose the service with the best overall performance
according to the non-functional attribute of each component
service. Suppose component service S is composed of n
components {c1, c2, ..., cn}, each component contains m
resource context attributes, and their QoS characteristics are
represented by {Q1, Q2, ..., Qm}. We can get the objective
function f of each resource as equation (1).

f =

m∑
i=1

(wi ×Qi) (1)

where wi denotes the value of QoS feature, 0 ≤ wi ≤ 1,∑m
i=1 wi = 1. And Qi denotes the value of the ith QoS

feature. The fitness function should be equation (2).

F = Freqirement −
N∑
i=1

(fi) (2)

where Freqirement denotes what user requires, fi denotes
value of the ith component. There are different orders of
magnitude and units due to different features, such as
processors, network conditions, memory, etc. They must be
standardised to ensure their fairness in service. Hence, we
adopted max-min normalisation method to transform each
feature.

6 Conclusions

In this paper, we take the process of soft development
into account. We proposed an improved TAO middleware

platform for pervasive computing named PAmiddleware,
which contains type of component service, plan of service,
and implementation of service, corresponding to three
stages, designing, deployment, and running, respectively.
We described the extension mechanism of TAO in detail.
And we gave a context description method by XML
language. Also the process of the adaptive mechanism
was presented. A component service planning method
was proposed using genetic algorithm. We take a video
streaming service as an example to build a prototype
system. The prototype system can adapt to the changes of
scene and network speed, and get better video transmission.

The next important job is to improve the genetic
algorithms in the configuration and reconfiguration
mechanisms or adopt other intelligent optimisation
algorithms. Meanwhile, it is necessary to adopt ontology
technology for modelling context information, which
is suitable for supporting the reasoning services in the
scope of pervasive computing applications, increasing
the expressiveness of context information and providing
support for reasoning.

Acknowledgements

The project is funded in part by the National Institutes
of Health, under Grant No. 5R01CA136535. This research
is funded in part by the Science and Technology
Project for the Universities of Shandong Province, under
Grant No. J18KB171, Open Research Fund of Shandong
Provincial Key Laboratory Of Infectious Disease Control
and Prevention, Shandong Center for Disease Control and
Prevention, under Grant No. 2017KEYLAB01, Discipline
Talent Team Cultivation Program of Shandong Women’s
University, under Grant No. 1904, Shandong Women’s
University High level scientific research project Cultivation
Fund, under Grant No. 2019GSPGJ07, Key projects of
Education Department of Shandong Province, under Grant
No. C2016M058.

References

Agirre, A., Parra, J., Armentia, A., Est́evez, E. and Marcos,
M. (2016) ‘QoS aware middleware support for dynamically
reconfigurable component based IoT applications’, International
Journal of Distributed Sensor Networks, Vol. 12, No. 4,
p.2702789.

Al-Khawaldeh, M., Chen, X., Moore, P. and Al-Naimi, I. (2019)
‘Knowledge-based auto-configuration system using ubiquitous
robotics for services delivery in smart home’, International
Journal of Embedded Systems, Vol. 11, No. 2, pp.182–199.

Becker, C., Handte, M., Schiele, G. and Rothermel, K. (2004)
‘PCOM – a component system for pervasive computing’,
Proceedings of theSecond IEEE Annual Conference on
Pervasive Computing and Communications, pp.67–76, IEEE.



116 Y. Guo et al.

Belcastro, L., Marozzo, F. and Trunfio, P. (2019) ‘A scalable
middleware for context-aware mobile applications’,
International Journal of Ad Hoc and Ubiquitous Computing,
Vol. 31, No. 2, pp.112–122.

Ben Mokhtar, S., Kaul, A., Georgantas, N. and Issarny, V. (2006)
‘Efficient semantic service discovery in pervasive computing
environments’, Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, pp.240–259,
Springer-Verlag New York, Inc.

Beni, E.H., Lagaisse, B. and Joosen, W. (2019) ‘Infracomposer:
policy-driven adaptive and reflective middleware for the
cloudification of simulation & optimization workflows’, Journal
of Systems Architecture, Vol. 95, pp.36–46.

Chollet, S., Lalanda, P. and Escoffier, C. (2015) ‘Extension of
service-oriented component models for dynamic environment’,
2015 IEEE International Conference on Services Computing,
pp.648–655, IEEE.

Da, K., Dalmau, M. and Roose, P. (2011) ‘A survey of adaptation
systems’, International Journal on Internet and Distributed
Computing Systems, Vol. 2, No. 1, pp.1–18.

Djeddar, A., Bendjenna, H., Amirat, A., Roose, P. and Chung,
L. (2017) ‘Context-driven composition for mobile applications:
a metamodelling approach’, International Journal of Embedded
Systems, Vol. 9, No. 6, pp.505–522.

Eibel, C., Do, T-N., Meißner, R. and Distler, T. (2018) EMPYA: An
Energy-Aware Middleware Platform for Dynamic Applications,
Friedrich-Alexander-Universitat Erlangen-Nurnberg, Dept. of
Computer Science, Technical Reports, CS-2018-01, January.

Escoffier, C., Chollet, S. and Lalanda, P. (2014) ‘Lessons learned
in building pervasive platforms’, 2014 IEEE 11th Consumer
Communications and Networking Conference (CCNC), pp.7–12,
IEEE.

Forkan, A., Khalil, I. and Tari, Z. (2014) ‘CoCaMAAL:
a cloud-oriented context-aware middleware in ambient assisted
living’, Grid Computing, pp.114–127.

Freitas, C.F., Meireles, A., Figueiredo, L., Barroso, J., Silva, A.
and Ramos, C. (2015) ‘Context aware middleware in
ambient intelligent environments’, International Journal of
Computational Science and Engineering, Vol. 10, No. 4,
pp.347–358.

Garlan, D., Cheng, S-W., Huang, A-C., Schmerl, B. and Steenkiste,
P. (2004) ‘Rainbow: architecture-based self-adaptation with
reusable infrastructure’, Computer, Vol. 37, No. 10, pp.46–54.

Jaeger, M.A., Parzyjegla, H., Mühl, G. and Herrmann, K.
(2007) ‘Self-organizing broker topologies for publish/subscribe
systems’, Proceedings of the 2007 ACM Symposium on Applied
computing, pp.543–550, ACM.

Kakousis, K., Paspallis, N. and Papadopoulos, G.A. (2010) ‘A survey
of software adaptation in mobile and ubiquitous computing’,
Enterprise Information Systems, Vol. 4, No. 4, pp.355–389.

Knappmeyer, M., Kiani, S.L., Reetz, E.S., Baker, N. and Tonjes, R.
(2013) ‘Survey of context provisioning middleware’, IEEE
Communications Surveys & Tutorials, Vol. 15, No. 3,
pp.1492–1519.

Mukherjee, A., Dey, N. and De, D. (2020) ‘Edgedrone: QoS aware
mqtt middleware for mobile edge computing in opportunistic
internet of drone things’, Computer Communications, Vol. 152,
pp.93–108.

Nocera, F., Mongiello, M., Parchitelli, A., Di Sciascio, E. and
Patrono, L. (2019) ‘A model for reflective middleware based
on fuzzy rule for context-awareness injection in ubiquitous
computing environments’, 2019 4th International Conference on
Smart and Sustainable Technologies (SpliTech), pp.1–7, IEEE.

Ouedraogo, C.A., Medjiah, S., Chassot, C. and Drira, K. (2018)
‘Enhancing middleware-based IoT applications through run-time
pluggable qos management mechanisms. application to a
oneM2M compliant IoT middleware’, Procedia Computer
Science, Vol. 130, pp.619–627.

Portocarrero, J.M., Delicato, F.C., Pires, P.F., Costa, B., Li, W.,
Si, W. and Zomaya, A.Y. (2017) ‘RAMSES: a new reference
architecture for self-adaptive middleware in wireless sensor
networks’, Ad Hoc Networks, Vol. 55, pp.3–27.

Sun, J. and Satoh, I. (2016) ‘Theory and implementation of
an adaptive middleware for ubiquitous computing systems’,
Journal of Information Processing, Vol. 24, No. 6, pp.878–886.

Vahdat-Nejad, H., Zamanifar, K. and Nematbakhsh, N. (2013)
‘Context-aware middleware architecture for smart home
environment’, International journal of smart home, Vol. 7,
No. 1, pp.77–86.

Weyns, D., Iftikhar, M.U., De La Iglesia, D.G. and Ahmad, T.
(2012) ‘A survey of formal methods in self-adaptive systems’,
Proceedings of the Fifth International C* Conference on
Computer Science and Software Engineering, pp.67–79, ACM.


