Damped-oscillator model of adaptive response and its consequences
by Yehoshua Socol; Yair Y. Shaki; Ludwik Dobrzyński
International Journal of Low Radiation (IJLR), Vol. 11, No. 3/4, 2020

Abstract: Many experimental, ecological, and epidemiological studies have shown that low doses of ionising radiation may be beneficial to human health by causing an adaptive response, a process called 'hormesis'. The dual effect of radiation has been summarised by the qualitative dual-probability model, which estimates the resulting biological effect of the radiation by taking into account both (a) dose- and time-dependent damage and (b) dose- and time-dependent beneficial health effects (adaptive protection). We report here further development of the dual-probability model into a quantitative phenomenological model. Our main objective is to model the time-evolution response to radiation as a time-evolution of a damped oscillator in the critical damping regime. The model predicts that an organism's resistance to radiation stress can be considerably improved by 'radiation training'. If the model is verified by future experiments, it may prove valuable; for example, it could considerably improve the efficacy of radiation therapy by increasing therapeutic doses.

Online publication date: Wed, 10-Mar-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Low Radiation (IJLR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com