Experimental investigation on shale gas transport characteristics in nanopores under high temperature and high pressure
by Jing Sun; Dehua Liu; Xiang Zhu; Wenjun Huang; Liang Chen
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 26, No. 3, 2021

Abstract: In this paper, we carried-out shale gas diffusion behaviour experiments under high temperature and pressure conditions (HPHT). Molecular membranes samples with a uniform pore size replacing shale cores are used in this experiment for the first time. The results show that: 1) the equation of shale gas diffusion coefficient and pore size was established. As the pore diameter increases, the diffusion coefficient increases exponentially. 2) The concentration gradient of shale gas in a nanoporous medium also has an impact on the diffusion capacity. 3) The greater the pressure, the smaller the diffusion coefficient in the confined pores. The diffusion coefficient increases as the temperature increases. 4) A new diffusion coefficient calculation method was proposed. The results provide theoretical guidance for the microscopic transport mechanism of methane transfer in the porous media of shale gas and tight sandstone reservoirs. [Received: 8 October 2019; Accepted: 13 December 2019]

Online publication date: Mon, 22-Feb-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com