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Abstract: Pests and disease recognition can be considered as Fine-Grained 
Visual Classification (FGVC) problems, suffering low inter-class discrepancy 
and high intra-class variances from the sub-categories, which is more 
challenging than common basic-level category classification dependent on 
traditional Deep Neural Networks (DNNs). To encourage further progress in 
challenging realistic agricultural conditions, this paper presents a realistic 
CropDP181 data set with 181 categories and fine-grained multi-stream 
aggregation network with models transferred named as MSA-NET (Multi-
Stream Aggregation Network) for fine-grained species recognition based on 
fusion idea. The novel MSA-NET model combines ResNet, NTS-Net 
(Navigator-Teacher-Scrutiniser Network), and FAST-MPN-COV (Towards 
Faster Training of Global Covariance Pooling Network) trained by a multi-
stream feature extractor to exploit the high-dimensional feature maps 
representing discriminative and non-discriminative parts as well as interclass 
variances. Finally, a fusion module equipped with NetVLAD (Network Vector 
of Locally Aggregated Descriptors) layer is developed to fuse different 
components model as a unified probability representation for the ultimate fine-
grained recognition. The MSA-NET model achieves competitive results in 
fine-grained pests and disease recognition outperforming state-of-the-art 
methods. 

Keywords: crop pests and diseases; fine-grained visual classification; multi-
stream neural networks; NetVLAD aggregation. 
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1 Introduction 

For agricultural countries, especially those developing countries whose economic growth 
depends mainly on agriculture, the health status of crops is a crucial point in agricultural 
research; in the growth of crops, pests and diseases are the natural enemies of most 
agricultural plants; therefore, research on pests and diseases is a key link to protect crop 
growth. In reality, a crop may experience a range of pests and diseases. However, pests 
and diseases may occur in many different parts, such as roots, shoots, stems, leaves, and 
fruits of plants; the fact that crops are attacked by a wide variety of pests and diseases 
makes the applicability of computer vision technology in the correct identification of 
pests and diseases more difficult, especially for the rapid development of intelligent 
agriculture today.  

With the rapid development of the Internet of Things (IoT) and deep learning, the 
monitoring and shooting of crops have become more and more convenient. The 
information acquisition of diseases and pests has become more accurate, which 
contributes to the diagnosis and identification of pests and diseases. In fact, rapid 
development of deep learning makes image recognition easier to achieve, but in complex 
agricultural contexts, especially on pests and diseases, the actual situation of pests and 
diseases in agriculture is complex; such as multiple periods of goals, inter-class similarity 
and intra-class differences. Therefore, existing DNNs-based methods achieving state-of-
the-art performance on other research fields, such as VGGNet (Simonyan and Zisserman, 
2014), ResNet (He et al., 2016) and DenseNet (Huang et al., 2017), are not suitable for 
Fine-Grained Visual Classification (FGVC) tasks of pests and diseases. Considering 
these situations, the popular fine-grained image classification model in the field of image 
recognition provides us with a better choice. Actually, FGVC remains a challenging task 
and more difficult than common image classification because objects from similar 
subordinate categories may have marginal visual differences that are difficult to 
distinguish by traditional DNNs or even humans. In reality, the identification of diseases 
and insect pests has these three fine-grained complex situations: plant disease or pest has 
multiple periods, inter-class similarity, and intra-class difference. It limits the further 
application of deep-learning technology in various agricultural missions and the wider 
development of computer vision. 

To distinguish fine-grained categories with a very similar outline, it requires 
specialised knowledge focusing on feature representation of discriminative object parts to 
expand the application of existing DNNs on FGVC. According to whether the method 
requires additional part location annotation, current state-of-the-arts can be divided into 
two groups: Strongly-Supervised Learning (SSL) and Weakly-Supervised Learning 
(WSL) (Han et al., 2015). The so-called SSL refers to the use of additional manual 
annotation information, such as object annotation frame and position annotation points, 
to obtain better classification accuracy in model training. For example, Zhang et al.  
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(2014) proposed a part-based R-CNN fine-grained classification model, which uses  
R-CNN algorithm to detect object level (e.g. birds) and its local areas (head, body, etc.) 
in fine-grained images. However, part-based R-CNN needs the help of bounding box and 
part annotation in training, and to achieve satisfactory classification accuracy, it also 
requires the testing image to provide bounding box, which limits the application of  
part-based R-CNN in actual scenes. Sensed by part-based R-CNN, Branson et al. (2014) 
proposed that the detection boxes of object level and part level could be obtained  
after the prediction points of part annotation were obtained by DPM algorithm. Thus, 
another fine-grained classification algorithm Pose Normalised CNN was developed. 
Nevertheless, it is also dependent on extra location annotation with expensive manual 
labelling, which makes it hard to be prevalently applied in practice.  

Weak supervised fine-grained image classification is the mainstream method of fine-
grained classification at present because no additional labelling cost is required. For 
example, Xiao et al. (2015) proposed the Two-Level Attention models (TLAN) to extract 
object-level and part-level features in bottom-to-up way at the same time. Then spectral 
clustering is employed to select important semantic parts of two-level attention for 
finding the discriminative area between the foreground object and parts. Lin et al. (2015) 
designed a novel bilinear network model (Bilinear CNN) is to combine two stream 
features at each location using the outer product, which considers their pairwise 
interactions in the end-to-end training process. Similarly, Peng et al. (2017) proposed the 
Object-Part Attention Model (OPAM) for weakly supervised fine-grained image 
classification without either object or part annotations, which avoids the heavy labour 
consumption of labelling. This model integrates two level attention: object-level attention 
localises objects of images, and part-level attention selects discriminative parts. Both are 
jointly employed to learn multi-view and multi-scale features to enhance their mutual 
promotion. Spatial Transformer Network (ST-CNN) (Jaderberg et al., 2015) also chooses 
a weakly-supervised way. The model can also locate several object parts simultaneously 
to achieve more accurate classification performance by first learning a proper geometric 
transformation and align the image before classifying. 

In the training process, the former SSL requires additional location information apart 
from image-level category labels, such as bounding-boxes or key-points of discriminative 
parts. Location annotation heavily relies on more expensive manual labelling and time-
cost, which makes it hard to be prevalently applied in practice. As a consequence, 
researchers pay more attention to WSL frameworks, which only employ image-level 
annotation to achieve FGVC tasks. For instance, the attention mechanism can be 
implemented to capture local features in a translationally invariant manner, which is 
particularly suitable for classifying fine-grained categories without manual location 
annotations. However, these WSL methods universally suffer lower performance than the 
best SSL models, especially when small objects appear in a cluttered background. 

Moreover, given the learned location features of objects’ parts, a single WSL model 
is likely to focus on the constant architecture of parts distribution and cannot distinguish 
interclass variances between similar fine-grained classes. More importantly, diverse WSL 
models are interested in multiple object parts with different preferences, which aggravate 
intra-class deviations of the same class. Consequently, it is very likely to bring about the 
wrong category when these parts are occluded due to pose or viewpoint variances, which 
leads to the diverse recognition performance of different WSL models. 
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In this article, to integrate multiple models’ advantages for discovering discriminative 
parts, an active multi-stream aggregation network named as MSA-NET is designed to 
utilise the mixture-granularity information of multiple DNNs by only using image-level 
labels. First, the MSA-NET generates input images with various data that augment  
pre-processing on the data set we created, in which all images are collected by different 
cameras and equipment of IoT outdoors. The framework is then trained by the multi-
stream DNNs architecture to exploit the high-dimensional feature maps representing 
discriminative and non-discriminative parts as well as interclass variances. Finally, a 
NetVLAD-aggregation module is developed to fuse different features as a unified 
representation for the ultimate fine-grained recognition. This optimisation design offers a 
high capacity to learn complementary yet correlated information for intra-class variances 
among multi-grained feature maps of different models, making the proposed MSA-NET 
more suitable for fine-grained pests and diseases species recognition. The experimental 
results show the robustness and superiority of MSA-NET. 

2 Data set overview 

In research, agricultural machines and robots independently collect images of crops and 
immediately convert them into management measures, allow for a high level of spatial 
and seasonal dynamics. Those field maintenance tasks severely dependent on the real-
time performance of online decision-making algorithms and stored in the platform. 
Subsequently, the multiple devices collected the crops images to meet more complex 
tasks of farmers and agronomists, which allow not only to monitor the health and growth 
of the crops continuously, but also to determine the operation measures for autonomous 
robots. Moreover, the images of smartphones play a significant role in social contact and 
sharing. Therefore, it is very challenging to classify and detect crop pests and disease 
species from large images with different angles, focal lengths, and resolutions, offered by 
various devices in the platform. 

Based on the above data acquisition platform, the process platform of its complete 
deep learning model is shown in Figure 1. With the concept of wisdom agriculture, the 
combination of agricultural internet technology and deep learning is an effective way to 
build computer vision problems in agriculture quickly. Based on various devices and 
equipment, the data set in this paper collects 124,437 images including crop diseases and 
pests of 88 upper-level categories and 181 sub-classes, which are the most reasonable for 
the PA purpose. Among them, the diseases were collected from 11 crops such as alfalfa, 
corn and tomato. The pests originated from 77 families, such as butterflies and bees. 
According to statistics, there are 100 in the least number of categories and 5109 in the 
largest number. The size of the data set is sufficient to meet the training requirement. 
Moreover, the condition that the data set has 181 classes has a sound premise basis for 
fine-grained classification. 

In the data set, multiple patterns of the same disease or insect pest, similar forms of 
different categories are shown in Figure 2. As can be seen from the figure, they all have 
many similarities, and there are countless similar scenarios in a wide variety of pests and 
diseases. When extracting the features of these images, the common deep neural 
networks usually only extract their common features; after training, some similar but not 
the same kind of test images with different shapes will be misclassified or confused, 
which leads to the difficulty of improving the accuracy of classification and recognition. 
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These two phenomena are the roadblocks that hinder the classification of pests and 
diseases to higher precision, but they are the best experimental materials for fine-grained 
classification models. 

Figure 1 Complete data and learning platform 
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Figure 2 Fine-grained image samples of crop diseases and pests (a) Crop disease sample  
(b) Crop pest samples 
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3 Multi-stream aggregation network architecture 

By analysing the differences in the recognition ability of individual models for different 
categories and the recognition of multiple models in the same category, we find that there 
are differences between different models and different feature extraction capabilities  
for pictures. Therefore, we design a fusion strategy to fuse the confidence results of  
the model through the fully connected layer output, so that the model MSA-NET 
complement each other and improve the accuracy, as shown in Figure 3. 

Figure 3 Schematic diagram of the MSA-NET model 
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3.1 Data augmentation 

To avoid over-fitting of the network, some data augmentations are applied to enhance a 
larger number of data set images with high quality before training. Generally, we need to 
resize the input images with various adjusted forms and distortion before sending them to 
the network. Hence, the more complicated the tasks are, the more images the DNN 
models need to nonlinearly estimate massive parameters adopted by most classification 
works, especially when using images with low resolution. To address this problem, we 
formulate a series of augmented methods to increase the general training datum, which 
consists of the following four steps one-by-one: 

1) Randomly crop a rectangular region whose aspect ratio is randomly sampled in  
[3/4; 4/3] and area randomly sampled in [8%, 100%], then resize the cropped region 
into a 448-by-448 square image. 

2) Randomly flip each image 180° horizontally and vertically with a probability of 0.5 
probability to increase the image’s diversity. Randomly rotate each image in 90, 180, 
and 270 clockwise to improve distortion adaptability. 

3) In the HSV colour space of the image, exponentially changing the saturation S and 
brightness V components of each pixel, keeping the hue H constant, to increasing the 
illumination variation. The S and V channels are respectively scaled with coefficients 
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uniformly drawn from [0.25, 4]. Randomly sample an image and decode it into  
32-bit floating point raw pixel values in [0, 255]. And add PCA noise with a 
coefficient sampled from a normal distribution N (0, 0.1). 

4) Finally, the mixup augmentation method proposed in Zhang et al. (2017) is selected 
to regularise the network models to favour simple linear behaviour in-between 
training examples for alleviating undesirable behaviours. In the mixup step, each 
time two examples are randomly sampled from training data to form a new virtual 
training example by a weighted linear interpolation: 

  
  

–

–

= + 1

= + 1

a b

a b

x x x

y y y

 

 
 (1) 

where ax  and bx  are raw input image vectors, ay and by  are one-hot encoding labels, 

 is a random number drawn from the beta  ,   distribution with the value range 

[0,1]. 
The mixup hyper-parameter α controls the strength of interpolation between vector-

label pairs, of which value is recommended as tending to 0. In this paper, we set  
α = 0.18 in the beta distribution and increase the epoch number asking for longer training 
progress to converge better performance. Thus, we achieve additional high-quality 
examples  ,x y   through the enhanced data augmentation for subsequent model training. 

Those above steps can obtain improved generalisation and robustness abilities of the 
network architecture by the augmented datum. 

3.2 Multi-steam feature extractor 

The feature extractor of the proposed MSA-NET consists of multiple classification deep 
neural networks that are trained concurrently on the augmented datum from the first 
stage. In this section, we will use NTS-Net (Yang et al., 2018) and FAST-MPN-COV  
(Li et al., 2018) models to obtain multi-dimensional feature maps. For each sub-model, 
we make some minor adjustments to the network architecture, such as changing the stride 
or kernel size of a particular convolution layer. Such a tweak often barely changes the 
computational complexity but might have a non-negligible effect on the model 
accuracy.  

Firstly, the FAST-MPN-COV is employed to extract fine-grained feature maps of 
small-scale object’s parts. This model is an iterative matrix square root normalisation 
method for fast end-to-end training of global covariance pooling networks, which 
consists of a basic classification network (AlexNet or ResNet), some covariance  
pooling layers and an FAST-MPN-COV meta-layer. To further improve our proposed 
architecture’s performance and efficiency, we adopt the transfer-learning strategy to learn 
the professional representation capability of the object’s parts based on the coarse-
grained domain knowledge from the ResNet model as mentioned above. We transfer the 
trained ResNet50 network as the classification network of FAST-MPN-COV, which 
avoids the repeated parameter calculation in much fewer epochs, further accelerating 
network training. After the last convolutional layer of ResNet50, we add some 1 × 1 
convolution with 1 =256c channels to down sample the outputted feature tensor, which 

outputs a 14 × 14 × 256 tensor. Then a second-order pooling is performed to estimate the 
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covariance matrix. Subsequently, the model designs a meta-layer with loop-embedded 
directed graph structure for computing approximate square root of the covariance  
matrix. The meta-layer consists of three nonlinear structured layers, performing pre-
normalisation, coupled Newton-Schulz iteration and post-compensation, respectively. 
The first pre-normalisation layer guarantees the following iteration convergence, which is 
achieved by dividing the covariance matrix by its trace. The second layer is of the loop 
structure, repeating the coupled matrix equations involved in Newton-Schulz iteration a 
fixed number of times, for computing approximate matrix square root. The third post-
compensation layer is set to counteract the adverse effect by multiplying the trace of the 
square root of the covariance matrix. In this work, we erase the subsequent ConvNet 
layers of FAST-MPN-COV and directly take the outputting symmetric matrix of the 
meta-layer as a 1 1( 1) / 2c c  dimensional vector 2F  as shown in equation (2): 

  2 , , ,, ,Fast resnet cova ns nsF H x y H Y Z    (2) 

where the function FastH  represents multiple iterative layers of the FAST-MPN-COV 

with the inputs  ,x y   and the transferring paper metres resnetH of ResNet50. cova  

denotes the covariance matrix of the output of the last convolution layer. Based on the 
pre-normalisation of cova  by trace or Frobenius norm, nsY  and nsZ  are intermediate 

variables of Newton-Schulz iteration, which are suitable for parallel implementation on 
GPU, deriving the corresponding gradients of back propagation. Hence, with both 
architectures, the covariance matrix  cova  is of size 256 × 256 and 2F outputs a 32,896-

dimensional vector as the image representation. 
Subsequently, we describe the NTS-Net model, which consists of bilinear attention 

pooling, weakly supervised attention learning, and post-processing, to complete the 
proposed overall network structure for the fine-grained classification and object 
localisation. The NTS-Net applies the ResNet neural network backbone to generate 
feature maps F  and attention maps in two-steam parallel structure size by one or several 

convolutional operations from input image batches. Attention maps ka are then split into 

M maps, reflecting the region of k-th object’s part. After that, feature maps vF are 

element-wise multiplied by each attention map ka with the same size to generate M part 

feature maps, which are then injected into additional local feature extraction function 
()g  to extract discriminative local feature representation. The final part feature matrix 

4F  is concatenated by concatenating these local features with the bilinear attention 

pooling  , which can be represented by equation (3): 

   4 1 k , ,M
k v resnetF g a F x y H      (3) 

where resnetH  presents the hyper-parameters of ResNet network.  indicates element-

wise multiplication for two feature tensors. In the following experiments, ()g is set as the 

global average pooling operation. During training, the initial learning rate is set to 0.001, 
with exponential decay of 0.85 after every five epochs. The weight of attention 
regularisation is set to 1.0 and the attention dropout factor is set to 80%. Then, we obtain  
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the local feature map vector 4F  performed on 2 2 2c w h   dimensionality, where the size 

of feature map is 2 2 14 14w h    and the channel number is 2
Mc N  with N = 512 and 

M = 7.  
Among them, we revisit some popular ResNet model tweaks. One basic tweak is 

replacing the 7 × 7 convolution in the input stem with five conservative 3 × 3 
convolutions, which lower the computational cost and permit the input of augmented 
datum with a larger 448 × 448 size. Then, we introduce the Inception-v4 module with 
residual connections module as the similar implementations of [Inception-v4, Inception-
ResNet, and the Impact of Residual Connections on Learning] and adopt batch 
normalisation module right after each convolution and before activation to improve the 
single-frame recognition performance. Finally, we abandon the final average pooling 
layer, the 1000-d full convolution layer and the softmax layer to extract the feature map 
vector 1F  and 3F  as shown in equation (4). 

  1,3 3 3, , , ,resnetF H x y W b     (4) 

where the function resnetH  can represent multiple convolutional layers of the ResNet 

architecture with the inputs ( , )x y   denoted to the first of these layers. 3W  denotes a 

square weight matrix asymptotically approximating complicated combination of multiple 
layers. 3b  can perform the biases of linear projection by the shortcut connections to 

match the dimensions, channel by channel. And  denotes the nonlinear activation 
functions, which was selected as ReLU. We initialise the weights as in [Bag of Tricks for 
Image Classification with Convolutional Neural Networks] and train all plain/residual 
nets from scratch with a weight decay of 0.0001 and a momentum of 0.9. The learning 
rate starts from 0.1 and is divided by 10 when the error plateaus. Then, we obtain the 
feature map vector 1F  performed on 3 3 3N c w h    dimensionality, N representing the 

mini-batch size, 1c representing the channel number of feature map, 3w  and 3h denoting 

the width and height of each map. Thus, we use SGD with a mini-batch size of 512, and 
feature map is converted to the size as 3 3 =7 7w h   and the channel number as 

3 =2048c .  

In addition to the proposed multi-stream structure, we also propose pre-training 
strategy to learn professional domain knowledge from the large-scale data set. We 
initially pre-train our ResNet50 and VGG19 models on the ImageNet 2012 classification 
data set that consists of 1000 classes with the 1.28 million training images and the 50k 
validation images. In this way, the network learns the common classification information 
and acquires domain knowledge during the pre-training process, and masters the fine-
grained discriminative information during the fine-tuning process. This strategy enables 
the network to learn the features of the target data set accurately and comprehensively, 
which can effectively improve the representation performance of neural networks on 
fine-grained small-scale data sets. 

3.3 NetVLAD aggregation 

The separability of features is the premise of the algorithm, if the extracted features are 
inseparable, it is meaningless to conduct network training blindly. Therefore, after 
feature extraction, this paper uses NetVLAD (Arandjelovic et al., 2016) (Vector of 
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Locally Aggregated Descriptors) for feature aggregation to better classify. Vector of 
locally aggregated descriptors proposed is a popular descriptor pooling method for both 
image recognition and classification. VLAD is a vector that can be used to aggregate 
local features (such as SIFT, SURF). And its function is similar to the Fisher vector while 
it is easier to get the feature space. VLAD captures the local descriptors’ statistics 
aggregated over the image and stores the sum of residuals (difference vector between the 
descriptor and its corresponding cluster centre) for each visual word. The algorithm steps 
of the VLAD are as follows: 

Using the traditional methods or the popular deep learning framework mentioned 
above to extract the local features, where each local descriptor is represented by x . 

Secondly, a codebook  1, , kC c c   of k  visual words should be learned with  

k-means. And then, the features of each image are quantised and each local feature is 
aggregated in the nearest cluster centre. After quantifying, the feature space is divided 
into several subspaces called cells. Next, accumulate the differences ix c  of the vectors 

x  assigned to ic . Finally, the descriptor could be represent by ,i jv , where the indices i  

and j , respectively represent the cluster centre and the local descriptor component. And 

indices l  represent the number of the local vector x ,  i la x  denotes the membership of 

the lx  descriptor to i -th visual word. We encode it as 1 or otherwise set to 0 when 

cluster ic  is the cluster closest to the descriptor lx . Assuming that there are N -
dimension descriptors, a component of v  is obtained as a sum over all the image 
descriptors: 

      ,
1

1 , 1,
N

i j i l l i
l

i k jv a x x dj c j


      (5) 

where jx  and  ic j respectively denote the j-th component of the descriptor x 

considered and of its corresponding visual word ic , then the vector v  is subsequently 

L2-normalised by 2/ || ||v v v . 

On the basis of the above, the NetVLAD strategy is used to training the aggregating 
pooling layer in the CNN framework, the centre of the NetVLAD could be adjust during 
the training process and need not be located at the centre of the cell, which can reduce the 
residual between clusters ic  and lx  to get a compact feature. With this global feature, 

NetVLAD can better describe the entire image. In order to make this layer trainable, this 
paper rewrites the hard assignment  i la x  to be a soft assignment as equation (6). 

 
2

2

|| ||

|| ||

l i

l i

x c

i l x c

i

e
a x

e



 

 

 





 (6) 

where   takes a constant value between 0 and 1, which makes the weights of descriptor 

lx  to cluster ic  proportional to their proximity. The weight of the descriptor increases  

as the distance from the cluster centre decreases. Equation (7) can be obtained by 
simplifying equation (6): 

 
T
i l i

T
i l i

w x b

i l w x b

i

e
a x

e  









 (7) 
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The parameters iw , ib , ic can be updated during the training stage. This makes the newly 

NetVLAD layer more flexible and could get a cluster centre position where the residual 
is further reduced. The final form of the aggregation layer is obtained by integrating the 
soft assignment into the VLAD descriptor equation (5) as shown following: 

      
1

,
T
i l i

T
i l i

w x bN

l iw x b
l

i

e
V j i x j c j

e  








 


 (8) 

Similarly to the original VLAD descriptor, the NetVLAD layer aggregates the first order 

statistics of residuals     l ix j c j  in different parts of the descriptor space weighted 

by the soft-assignment  i la x  of descriptor lx  to cluster ic . Note however, that the 

NetVLAD layer has three independent sets of parameters iw , ib , ic , compared to ic  of 

the original VLAD, which enables greater flexibility than the original VLAD. 
With aforementioned operations, our proposed fusion model gain an overall 

representation of prediction score in decision-level perspective, which actually is the 
joint posterior probabilities by integrating several prior probabilities from each 
component model of Multi-steam DNN feature extractor. Finally, we add two full 
convolution layer, a dropout layer and a softmax layer after the VLAD aggregation 
module to output the normalised classification result. As the softmax operator obtains 
predicted probabilities, the cross entropy loss is used to estimate the degree of 
inconsistency between the predicted score and the true label. The optimal solution of loss 
is to minimise the error gap to small enough value with some regularisation constraints 
including L1 or L2 terms. It encourages the output scores dramatically distinctive, which 
potentially leads to overfitting for intra-class description. This easily leads to the low 
inter-class recognition in dealing with other categories. Thus, during training we optimise 
the following multi-part loss function: 

   
2

1 1
1 1 1

log
W W

agg feature c c c i
c i c

Loss L + L y S y softmax F 
  

       (9) 

where featureL  indicates the loss of multi-DNNs feature extractor, and fuseL  denotes the 

partial loss of aggregation module. Moreover, we introduce the weighting factors 

1 [0,0.5]   to balances the importance of each loss. Our proposed loss is a simple 

extension to softmax that we consider as an experimental baseline to differentiate inter-
class discrepancy among fine-grained categories. Specifically, W indicates the number of 
categories. cy  indicates the indicator variable (0 or 1) if the category and sample have 

the same category, otherwise 0. cS  denotes the predicted probability that the observed 

sample belongs to category c. Similarly, we obtain the whole loss of three models 
extracting various feature maps Fi with the softmax function. In subsequent experimental 
results, we use the above loss form to optimise the entire model structure, which is 
demonstrated to be effective in improving the performance for fine-grained visual 
classification tasks. 
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4 Results and discussion 

This section compares the performance of state-of-the-art deep-learning models, fine-
grained models, and their fusion model on the data sets created in this article. The results 
are presented in the classification. To ensure the reliability of training, this paper divides 
10% of the data set into a test set, a total of 11,433 pictures, the rest as a training and 
verification set. The experiments with seven deep-learning classification architectures – 
including SENet (Hu et al., 2018), VGG19, ResNet50, Densenet121, and fine-grained 
classification models such as NFL (Wang et al., 2018), NTS-Net, FAST-MPN-COV 
were carried out. Finally, this paper also applies decision-level fusion of these fine-
grained models – MSA-NET on the data set. All models were and tested on an Intel Core 
i7 3.6 GHz processor with four NVIDIA Tesla p40 GPUs and 256 G RAM. As shown in 
Table 1, the accuracy of the classification is obtained for fusion model MSA-NET, and 
the accuracy of the current classification model on a data set. 

Table 1 Experimental results “Acc” denotes the top-1 accuracy in percentage “time” denotes 
the time spent on the test 

Method Accuracy (%) Time(s) 

VGG19 78.14 440 

ResNet50 85.74 405 

Densenet121 81.38 380 

SENet 81.38 380 

NTS-Net 86.67 138 

FAST-MPN-COV 87.58 729 

DFL 75.81 734 

MSA-NET 91.18 756 

As shown in Table 1, the current popular deep learning models have a certain accuracy in 
classification; for example, ResNet50 achieves an accuracy of 85.74%; however, the 
fine-grained model MSA-NET can achieve better results (such as FAST-MPN-COV 
increased by 1.84%, NTS-Net increased by 0.93%). On this basis, the fusion of these 
fine-grained models achieves a higher recognition rate. Overall, the accuracy of the 
model after fusion is higher than the accuracy of a single model prior to fusion. Explain 
that the fusion model can solve the fine-grained image classification problem well. 

At the same time, this paper also observes the training loss of these models, as shown 
in Figure 4. Due to the complexity and largeness of the data set, compared with fine-
grained classification network, some popular classifiers such as VGG19 and Densenet-
121 are obviously not as effective as fine-grained classification model training. What’s 
more, on this basis, the model after fusion has a better training effect than all models 
including single fine-grained models. To a certain extent, this training loss also proves 
that the fused fine-grained model has a better effect on the identification of pests and 
diseases. 
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Figure 4 Training loss (see online version for colours) 

 

Owing the complexity of the patterns shown in each class, especially in terms of form 
and background, the system tends to be confused on several classes, which results in 
lower performance. Figure 5 presents the confusion matrix of the final recognition 
results. Based on the results, this paper can visually evaluate the performance of the 
fusion model classifier and determine what classes and features are more highlighted by 
the neurons in the network. Further, it helps to analyse a further procedure in order to 
avoid that inter-class confusion. From Figure 5, the colour bar of the diagonal reflects the 
correct degree of classification of each category, the deeper the yellow, the higher the 
accuracy of classification. Based on this criterion, it can be seen that the fusion model has 
higher accurate classification accuracy. 

Based on the results obtained by the fusion model, this paper compares the results of 
ResNet50, NTS-Net, Fast-MPN-COV, and MSA-NET; and quantitative accuracy 
analysis of each type of each model. It can be found that the same model has different 
accuracy for different categories. Although the individual models have different 
recognition capabilities for different categories, it can be seen from the results of the 
fusion model that the fusion model combines and complements different feature 
extraction capabilities of different images. The accuracy of different models in the same 
category is different. For example, in category 2, the accuracy of NTS-net is 84.6%, and 
the accuracy of Fast-MPN-COV is 76.9%. The difference in accuracy between them is 
relatively large, so this paper gets the results after the model fusion. The accuracy of the 
fusion model in the second category was 92.3%, which was 7.7% higher than NTS-net 
and 15.4% higher than Fast-MPN-COV. Overall, it can be found that the accuracy of 
each type of fusion has different degrees of improvement than the accuracy of each type 
before fusion so that the overall accuracy after fusion is improved. Further analysis is 
shown in Figure 6. For the 15 pictures in the 181 class, the red representative model 
predicts the wrong picture, and the rest represent the predicted image. The results 
obtained by the fusion model show that the results predicted by the fusion model are all  
 



   

 

   

   
 

   

   

 

   

    Multi-stream aggregation network for fine-grained crop pests 65    
 

    
 
 

   

   
 

   

   

 

   

       
 

correct. It shows that the fusion model can fuse the feature extraction capabilities of 
NTS-Net and Fast-MPN-COV models, thus improving the accuracy of model 
classification. 

Figure 5 Confusion matrix of the fusion model 

 

Figure 6 Model classification results on the part of the data set 

 

5 Conclusion 

In various precision agricultural tasks, scientific studies on species identification of pests 
and diseases have been considered as one of the most important applications. Since pests 
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and diseases recognition suffers the low inter-class discrepancy and high intra-class 
variances from the sub-categories, the fine-grained visual classification of pests and 
diseases is still challenging for traditional Deep Neural Networks (DNNs). In this 
investigation, we present a domain-specific deep-learning classification model according 
to practical agricultural tasks to classify 181 categories with 124,437 pieces collected by 
different cameras and equipment of the Internet of Things (IoT). Firstly, the proposed 
method employs data augmentation tricks to enlarge the data set and pretrains ResNet 
networks on high-quality images data sets to learn fine-tuning skills. Then, refined 
multiple DNNs consisting of ResNet, NTS-Net, and FAST-MPN-COV are applied to 
design a multi-stream feature extractor, which utilises the mixture-granularity 
information to exploit features distinguishing interclass and intra-class variances. Finally, 
a fusion module equipped with NetVLAD aggregation layer is developed to fuse 
different components model. Experiments demonstrate the effectiveness of the MSA-
NET with higher accuracy of 91.8% at a moderate speed, which outperforms state-of-the-
art deep-learning methods. In the future, we plan to add more images and annotations of 
new pests and disease species for fine-grained classes that are challenging to annotate. 
Further research is also necessary to lightweight network with model parameters 
compression while boosting speed and improving accuracy. 
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