New method to predict truck-semitrailer jackknifing effect
by Roberto Spinola Barbosa
International Journal of Heavy Vehicle Systems (IJHVS), Vol. 27, No. 6, 2020

Abstract: A new method based on two articulated bodies with internal inertial force, similar to the structural buckling effect, is proposed to describe the unstable yaw relative angular movement between truck and semitrailer, known as jackknifing. An analytic expression is derived from the proposed linear model, allowing the prediction of the deceleration limit prior to the yaw instability phenomenon. A detailed non-linear model with 19 degrees of freedom was developed and used as a simulations tool to verify dynamic performance. The analytical results of the jackknife effect were validated by comparison with the instability tendency simulated with a complete vehicle dynamic model. The results show good agreement between the proposed analytical expression and the numerical simulation. The proposed analytic expression is independent of the vehicle speed and does not require a stability analysis or an integration process, unlike all other techniques available in the literature.

Online publication date: Fri, 12-Feb-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Heavy Vehicle Systems (IJHVS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com