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Abstract: Cloud computing has taken the world in its strides. In cloud
datacentres, thousands of physical machines run continuously to execute
incoming workload. Virtual machines are provisioned to incoming requests and
are allocated to physical machines. Efficient mapping of virtual machines to
physical machines has potential impact on the efficiency of datacentres. This
paper proposes two greedy heuristics for virtual machines to physical machines
mapping. We have empirically evaluated proposed heuristics and existing
greedy heuristics for comprehensive datasets including PlanetLab datasets.
Thereafter we have considered issue of hotspot, and proposed two heuristics for
hotspot mitigation. We have evaluated our proposed hotspot mitigation
heuristics for wide varieties of cases and case of SLA violation is also taken
into consideration. Extensive simulation shows that our proposed heuristics are
substantially faster than their counterparts. As clouds have strong business
perspective also, our heuristics can be seen as prime alternate options for
virtual machinesto physical machines mapping.
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1 Introduction

Cloud computing model has provided computing as a utility (Persico et al., 2018) just
like electricity, water, gas, etc. in which resources are made available as a utility and give
an illusion of having as much resources as requested by the user. This computing
paradigm is based upon pay-as-use model in which users pay for what they have used
only. It emerged as a new paradigm for dynamic provisioning of computing services
supported by state-of-the-art datacentres (Yin et a., 2019) that usually employ virtual
machine (VM) technologies for consolidation and environment isolation purposes. Earlier
companies, irrespective of the nature of their work had to spend large amount of money
in setting up computing infrastructures, power supply equipments, cooling equipments,
etc. Now people are choosing clouds as better option. In Cloud computing environment,
datacentres have thousands of physical machines (PMs) to execute incoming computing
load. VMs are provisioned to incoming requests. Once VMs are provisioned, these are
assigned to PMs according to some predefined policy. As cloud computing has business
perspective also and for running a business for long-term, total cost of ownership (TCO)
need to be reduced and return on investment (ROI) need to be increased while
maintaining quality at the same time. Cost of energy consumption contributes a big part
in overall expenditure of a datacentre.

1.1 Deployment models

Cloud computing is a style of computing in which business processes, application, data,
and any type of IT resource can be provided as a service to the users. Cloud provider
offers certain deployment models for consumers to opt for.

1.1.1 Public clouds

Public cloud services are offered by third-party datacentre provider to end-user
consumers over the internet. Public cloud offers resource pooling, self-service, service
accounting, elasticity, multi-tenancy to manage the solutions, deployment, and securing
the resources and applications. Companies can use it on-demand and with the
pay-as-you-use option, it is much like utility consumption. Enterprises are able to offload
commodity applications to third-party service providers. The term ‘public’ does not mean
that it is free, even though it can be free or fairly inexpensive to use. It also does not
mean that a user’s data is publically visible — public cloud vendors typically provide an
access control mechanism for their users. Every workload is not ready for public cloud
today. Workloads that depend on sensitive data, normally restricted to an organisation,
are not public today. Most companies are not ready to move their LDAP server to a
public cloud because of the sensitivity of the employee information. Healthcare
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record — until the security of the cloud provider is well established is another example.
Some other examplesinclude:

e Workloads composed on various, dependent services.

e High throughput online transaction processing.

e Workloads requiring a high level of auditability and accountability.

e Non-virtualised workloads and non-availability of cloud-based licensing strategy.

e  Workloads looking for complex service accounting mechanisms for different
services for various departments-based billing.

o Workloads requiring flexibility and customisation.

1.1.2 Private clouds

Private clouds are deployments made inside the company’'s firewall (on-premise
datacentres) and traditionally run by on-site servers. Private clouds offer some of the
benefits of a public cloud computing environment, such as elastic on-demand capacity,
self-service provisioning and service-based access. Private cloud is suitable when the
traditional requirements, such as control, security, and resiliency, are more emphasised
by an organisation with the restricted and designated user access and authorisation.

1121 Servicesin private cloud

This section highlights the services provided by a private cloud and the services
consumed from public cloud, specificaly:

e virtualisation

e government and management
e multi-tenancy

e  consistent deployment

e chargeback and pricing

e  security and access control.

1.1.2.2 High‘cost of privacy’

Many experts believe a private cloud implemented with internal hosting/running of the
infrastructure makes it difficult to realise many key benefits of clouds, including:

e Eliminating capital expenses and operating costs. Ownership of the hardware or
software eliminates the pay-per-use potential, as these must be upfront purchases.
Thefull cost of operations must be shouldered by them asthere is no elasticity. If the
private cloud hardwareis sized for peak loads, there will be inefficient excess
capacity. Otherwise, the owner will face complex procurement cycles.

e Removing undifferentiated heavy lifting by offloading datacentre operations: Utility
pricing (for lower capital expenses and operating expenses) usually implies an



Correlation-based heuristics and evaluation of existing greedy heuristics 279

outside vendor offering on-demand services. It relies on the economies of multiple
tenants sharing alarger pool of resources. These higher costs might be justified if the
benefits of quicker and easier self-service provisioning and service-oriented access
arelarge.

1.1.2.3 Private clouds provide more control

In traditional security models, location implies ownership which in turn implies control
when security is location-specific. Then location, ownership, and control are aligned.
Strong requirements for control and security usualy drive a preference for a private
cloud, where they own the cloud resources and control the location of those resources.
For example, government may not want their applications or data to reside outside certain
borders. Clouds rely on virtualisation; and in the public model, this loose coupling breaks
the link between location and application, and reduces the perceived ownership and
control. When we talk about the information control, it is not related to fixed geography
or tota ownership of the information. One example is public key encryption — the
ownership of the key means control over the information without owning the rest of the
infrastructure. The information control can be managed over the infrastructure that is
trustful on the basis of the contracts, regulations, SLAS, standards, and imposition of the
security mechanism on service providers. Compliance is difficult outside of traditional
security models. As long as control through technology and contracts can be clearly
demonstrated, it is possible to make public cloud computing environment as secure as a
privately own facility. Auditors and regulators are continuously adapting to new
technologies and business models. Owners can have multiple avenues as:

e full-implementation ownership
e lack of full ownership
e controlled ownership.

There are many possible approaches in between, such as partial control and shared
ownership. There are aso different levels of limited access — specific departmental
access, industry-only access, and controlled partner access.

1.1.3 Hybrid clouds

A hybrid cloud is a combination of an interoperating public and private cloud. Thisis the
model where consumer takes the non-critical application or information and compute
requirements to the public cloud while keeping all the critical information and application
data in control. The hybrid model is used by both public and private clouds
simultaneously. It is an intermediate step in the evolution process, providing businesses
an on-ramp from their current IT environment into the cloud. It offers the best of both
cloud worlds — the scale and convenience of a public cloud and the control and reliability
of on-premises software infrastructure — and let them move fluidly between the two on
the basis of their needs. This model allows the following:

e dadticity, which isthe ability to scale capacity up or down within minutes, without
owning the capital expense of the hardware or datacentre

e  pay-as-you-go pricing
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e network isolation and secure connectivity asif all the resources were in aprivately
owned datacentre

e gradualy move to the public cloud configuration, replicate an entire datacentre, or
move anywhere in between.

1.1.4 Community clouds

This is the cloud managed by groups of people, communities, and agencies especially
government to have the common interests — such as maintaining the compliance,
regulation, and security parameters — working on the same mission. The members of the
community share access to the data and applications in the cloud.

1.1.5 Shared private cloud

Thisis a shared compute capacity with variable usage-based pricing to business units that
are based on service offerings, accounts datacentres. It requires an internal profit centre to
take over or buy infrastructure made available through account consolidations.

1.1.6 Dedicated private cloud

Dedicated private cloud has IT service catalogue with dynamic provisioning. It depends
on standardised service-oriented architecture (SOA) architectural assets that can be
broadly deployed into new and existing accounts and is alower-cost model.

1.1.7 Dynamic private cloud

Dynamic private cloud allows client workloads to dynamically migrate to and from the
compute cloud as needed. This model can be shared and dedicated. It delivers on the
ultimate value of clouds. Thisis a very low-management model with reliable SLAs and
scalahility.

1.2 Energy efficient datacentres

Datacentre energy consumption (Celesti et a., 2019) has nearly quadrupled in the past
decade. It is reported that Celesti et a. (2019), US datacentres consumed 61 billion
kilowatt-hours of power in 2006, which constitutes 1.5% of all power consumed in the
US and represents a cost of $4.5 billion and its electricity consumption increased by
nearly 40% from 2007 to 2012. Recent studies show that energy consumption by
datacentres worldwide in year 2015 and 2016 was 405 billion kwh and 473 billion kWh
respectively (Son and Buyya, 2019). So cloud providers are seriously concerned with
reduction of energy cost. Moreover there has been increasingly pressure from
governments (Vasic and Kostic, 2016) all over the world for green computing. In cloud
computing datacentres, thousand of servers run continuously to execute load and research
shows that their processor utilisation at any time is very low due to volatile resource
demand. So, lot of research work has been done to device many heuristics to tightly pack
VMs into minimum number of PMs. Existing heuristics are very CPU intensive, i.e.,
require large computations for VM to PM mapping. Since this allocation of VMs to PMs
is afreguent process, so these heuristics make the process slow and result in more energy
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consumption indirectly. Moreover when PMs are packed with maximum number of VMs,
SLA violation may occur in peak hours and thus require VM migration process (Rastegar
et al., 2019) which does not come free of cost. This process becomes more costly for
migration on different networks (Qi and Tao, 2019). Severa strategies have been
proposed by researchers for this assignment. First fit/first fit decreasing (FF/FFD) are
commonly implemented in commercia cloud softwares.

2 Related work

Research work related to energy efficient computing is going on at various levels. Xiong
et a. in 2019 worked towards increasing efficiency of cloud servers and proposed an
algorithm for resource management dynamically. They tested their algorithm for
reduction in the time in VM migration and network traffic if VMs are migrated to distant
location. Since VMs stop functioning during migration, so fast migration process is still
area of research. Beloglazov et al. in 2015 analysed the sources of high energy
consumption of PMs and then presented the classification of energy efficient operation of
hardware and software parts of datacentre. Pedram in 2012 explored the main cause of
rising energy consumption in cloud datacentres and proposed techniques for energy
efficiency. He worked towards problem formulation for energy efficient resource
alocation. Beloglazov et a. in 2016 proposed an agorithm for dynamic allocation and
consolidation of VMs and powering down the nodes not in use. While allocating VM to
PM, they have used modified best fit decreasing (MBFD) algorithm which chooses that
PM among several PMs which resulted in least increase of energy consumption. They
worked towards SLA violation and hotspot mitigation also. “When resource regquirements
of VMs increase in peak hours and cannot be met by PM holding it, it is condition of
hotspot. When hotspot occurs, few VMs have to be transferred from current PM to other
PMs.” They proposed several algorithms for mitigation of hotspot like ‘minimisation of
migration’” (MOM) and ‘random choice’. In both of these algorithms for hotspot
mitigation, they considered single resource. In MOM, those least number of VMs were
selected for migration which could mitigate hotspot, so that overhead of migration could
be avoided. Xiao et a. in 2015 calculated difference among values aong various
dimensions of resource requirements (RRs) vector and tried to accommodate different
kind of workload to improve resource utilisation of servers. Bin packing approach was
used to map VMs to PMs. Farahnakian and Pahikkala in 2019 formulated VM placement
problem as stochastic integer programming problem to find out PMs which have
sufficient resources to satisfy the RRs of VMs and keeping check on energy
consumption. Xu et al. in 2016, suggested that resource migration could be done using
server automation that provided the capability to perform bare-metal provisioning that
enabled to deploy OS on physical and virtual hosts consistently. Jiaet a. in 2017 studied
and analysed the consequences of re-assigning the |P addresses to different sites after
migration of VMs. Cesdlli et al. in 2017 suggested the SLA-based resource allocation
problem for multi-tier cloud applications. Their solution was a distributed solution for
CPU, data and network elements. The problem was formulated as a three-dimensional
vector optimisation problem. Li et al. in 2019 presented a technique for VM allocation
and consolidation of VMs on minimum number of servers thus reducing the energy
consumption. Gai et al. in 2019 discussed energy efficient VMs alocations in mobile
clouds and VM migration methodologies considering various resources. Jia et a. in 2018
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suggested greedy particle swarm optimisation to optimise the alocation of shared
resources to have economical VM configuration. Gao et al. in 2018 explored greedy
heuristics for VM to PM mapping. The main function of this algorithm was to minimise
the estimated cost and enhance the VMs configurations. Chen in 2019 studied particle
swam optimisation for VM placement optimisation in large cloud datacentres VM to PM
mapping. Song et al. in 2019 proposed a genetic algorithm with resources taken as
knapsack. They started with basic solution and then refined it so that chances of hotspot
are reduced, thus requiring VM migration less number of times and hence saving energy.
Yao and Yu in 2019 projected a strategy for dynamic allocation of resources on demand
and reduced the number of active servers, thus saving power. They used bin packing
approach. Zhang et al. in 2019 presented a technique for VM allocation and consolidation
of VMs on minimum number of servers thus reducing the energy consumption.
Dayarathna et a. in 2016 analysed FFD variants and according to them AvgSum variant
of FFD was best. Madani and Jamali in 2018 studied multidimensiona heuristics and
compared various variants. Gergo et al. in 2012 studied the multidimensional vector bin
packing (VBP) problem with dynamic costs and reduction of the bin packing problem to
the modified multidimensional vector packing. They studied the VM migration issues and
discussed provisioning of resources to VMs in energy efficient manner. They also found
that avoiding VM migration was a good option as it carries extra overhead and slow
down performance. It becomes more cumbersome when VM migration was done over
different networks. We present below research analysis in tabular form mentioning merits
and demerits of each work.

Tablel Related research work
Author Idea Technique Harnessing Merits Demerits
components
Celesti Tightly Linear Genera Minimum number  Overloaded
et al. (2019) packingof  programming  resources of resources resources
bins
Zhangeta. Comparison  Bin packing General Minimum Overloaded
(2019) of various resources resources resources
FFD variants
Sotiridis To achieve Switching  CPU, drive, Less power Unrealistic
et a. (2018) minimum server power network consumption assumptionsin
power, workload
performance
constraints
Xiong et a. Minimum DVFS CPU Deep analysis of Single
(2019) energy under various aspectsin  resource under
performance energy saving consideration
constraints techniques, SLA
considered
Beloglazov Energy and FFD CPU Workload Migration
et a. (2015) VM consolidationto  over network
consolidation minimum number can slow down
of PMs, SLA whole process

considered
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Tablel Related research work (continued)

. Harnessing ; .
Author Idea Technique components Merits Demerits
Farahnakian ~ Keep check Stochastic CPU Keeps power Single
and on energy integer consumption resource under
Pahikkala consumption programming within range consideration.
(2019) hotspot and
coldspot
condition not
discussed
Song et al. Reducing Genetic CPU Chances of Single
(2019) hotspot and algorithm hotspot reduced  resource under
VM migration consideration.
Condition of
cold spot not
discussed
Yaoand Yu VM Linear CPU Server Single
(2019) consolidation programming consolidated. resource under
approach hotspot/coldspot  consideration
discussed
Xiao et a. Turning off ~ Bin packing CPU Workload VM migration
(2015) lightly loaded consolidatedto  over network
PMs lessPMs may slow
down whole
process

3 Research gap

Literature survey reveals that many novel approaches have been used by researchers in
the field of cloud computing. Prominently, authors have worked upon genetic agorithm,
stochastic integer programming, honey bee agorithm and bin packing approach for
alocating VMs to PMs in cloud computing environment. Most of authors, through
different approaches, have tried to find the mechanism to alocate maximum number of
VMs to PMs with an objective to reduced power consumption. In most of research work
carried out in recent years, authors have concentrated upon ‘how to tightly pack PMs
with VMs'. When a PM is tightly packed with VMs and resource demand of VMs
residing in that PM increases, it results in hotspot situation. Either the hotspot issue has
not been discussed in previous works or if it has been discussed, it incurs extra overhead
due to VM migration especialy if done over the network. A situation of coldspot may
arise when a server runs at low utilisation. How to resolve coldspot issue, is not discussed
appropriately in previous work. Also the algorithms discussed in previous works for
mapping of VMs into PMs are compute intensive which consumes large processing time
and increases power consumption of processor indirectly. Since VM allocation to PM is
done frequently in clouds, faster algorithm is needed. So, identified research gap and
further direction of research work can be summarised as follows.
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e  Faster algorithm for VM to PM mapping is needed which takes less CPU cycle,
leading to less power consumption.

e Algorithm should avoid hotspot and if it occurs, algorithm should resolve it locally
without need of migration over network as far as possible.

e  Coldspot condition should be checked periodically and if occurs, workload of
underutilised PM should be consolidated with other active PMs.

4 Objectives of paper

Based upon literature review and identified research gap, following objectives have been
taken in this paper.

e Todevelop faster and general purpose heuristic for VM to PM mapping in cloud
datacentres.

o Todevelop faster heuristics for local hotspot mitigation, avoiding migration over the
network.

5 Proposed framework

The proposed framework describes how consumers interact with cloud system. It shows
various interfaces through which requests pass through after getting accepted. We have
upgraded the framework proposed by Beloglazov et a. (2016). In their framework, they
have taken eight modules in green service allocator part. Out of eight, three are ‘pricing’,
‘consumer profile’, and ‘accounting’. These modules are closely interlinked. ‘Pricing’
module tells how service regquests are charged, ‘ consumer profile’ module collects special
features of consumer so that privilege may be given to such consumers and ‘ accounting’
module monitors the actual usage of resources by VMs and accounts for the resource
usage costs. We have taken six modules, which are interwoven, so interact frequently
with each other for sharing information. So, we have taken functionality of above
mentioned three modules into one module named as ‘ profile manager and pricing’. This
framework has two new modules named as ‘SLA analyser’ and ‘statistical analyser’, for
keeping SLA information and complete history of all applications respectively. ‘ Service
analyser’ modules continuously interact with ‘SLA analyser’ module to guarantee that
SLA is not compromised. ‘ Threshold analyser’ module is taken exclusively for keeping
track of usage of various resources. ‘VM manager’ periodically interacts with ‘threshold
analyser’ module to know current usage values and threshold values for various
resources. The ‘VM manager’ module comprises of various functions. It is most
important part of whole framework. It is responsible for overall performance of whole
framework. It is responsible for allocating VMs to incoming requests and then allocating
VMsto PMsin energy efficient manner. Algorithms for VMs to PM mapping are part of
this module. This module continuoudly interacts with other modules in framework for
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getting updated information about all VMs. It keeps on interacting with ‘threshold
analyser’ module to have latest information about resource usage. As soon as a resource
crosses its threshold usage, VMs need to be migrated. VM migration process is part of
this module. As Figure 1 shows, users/brokers/enterprises interact with cloud architecture
for accessing cloud resources. Here complete architecture is divided into three layers
namely top layer, middle layer and bottom layer. Top layer consists of users/brokers/
enterprises. Middle layer consists of following six modules which is core part of cloud
architecture. Bottom layer consists of PM which host VMs. Various modules are
discussed below.

e  Service analyser — This module analyses the service requirements of incoming
applications. Service requirements can be of two types — static and dynamic. Static
requirements infrequently changes with time while dynamic reguirements frequently
changes with time. So, analysing service requirements of applicationsis essential for
efficient working of framework. It also takes information regarding resource
utilisation and energy consumption from ‘threshold analyser’, current statistics from
‘statistical analyser’ and availability of VMsfrom ‘VM manager’ respectively.

e S Aanalyser — Responsibility of thismoduleisto make sure that SLA is not
violated. It keeps record of SLA details, priorities, privileges of various customers
and continuously monitors these parameters so that SLA is not violated. When
workload for a particular application changes and if customer has requested for
resources scaling, it informs VM manager’ module regarding it.

e Threshold analyser — It keeps utilisation threshold for all resources. ‘ Service
analyser’ continuously interacts with ‘threshold analyser’ while accepting new
application. During execution of current requests, it makes sure that utilisation of
resources does not cross their threshold values.

e  Satistical analyser — It records information regarding current utilisation of all
resources and past history of applications related to their resource utilisation.
‘Service analyser’ interacts with ‘ statistical analyser’ while serving requests from
applications.

e Profile manager and pricing — It decides priority of customer so that special status
can be given to higher priority customer over the others. It also saves information
regarding auto scaling requests by customers. It charges the service requests as per
defined policy. It monitors the actual usage of resources by VMs and maintains
accounts for the resource usage costs. Billing monitor interacts with ‘ statistical
analyser’ for extracting statistics for billing purposes. It interacts with ‘ service
analyser’ to get information of new requests.

e VM manager — This module keeps track of available VMs and resource usage of
existing VMs. As new request comesin, it allocates VMs to new applicationsin
consultation with ‘service analyser’ module. It isaso responsible for VM migration
in hotspot mitigation and coldspot mitigation. It interacts with * statistical analyser’
for coldspot and hotspot mitigation.
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Figurel Proposed framework for cloud computing
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6 Methodology

We have formulated problem of VM to PM mapping as a multidimensional bin packing
problem. Given nitemswith sizess;, s, ..., Sy suchthat 0< s <1for 1 <i <n, pack them
into the fewest number of unit capacity bins. Problem is NP-hard (NP — complete for the
decision version). There is no known polynomial time algorithm for its solution, and it is
conjectured that none exists. There is difference between multiple knapsack problem and
bin packing problem. Knapsack problem pack a subset of the items into a fixed number
of bins, with varying capacities, so that the total value of the packed items is a maximum.
Bin packing problem suggest: given as many bins with a common capacity as necessary,
find the fewest that will hold al the items. In this problem, the items are not assigned
values, because the objective does not involve value.

6.1  Vector hin packing

Generally VM placement problem has been solved by considering only one resource, i.e.,
one dimension while VMs require multiple resources. So, this problem can be smulated
as VBP problem. In VBP we are given n things having d-dimensions and we are to place
these things into minimum number of bins which are represented by same number of
dimensions. Let V1, V2, V3, ..., Vn be n number of vectors representing n number of
things. VBP maps these n vectors to r number of bins B1, B2, B3, ..., Br having same
dimensions asthat of vectors where for each bin x and for each dimension y.
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Zm€ BxWm <=1

Here objective is to minimise r. VBP is NP-hard for every d and APX-hard for d >= 2.
VBP can be applied in cloud computing environment for allocating VMs to PMs. VMs
are treated as things and bins can be treated as PMs. Each VM has requirement of various
resources like processor, memory and 1/O. Similarly PM has capacity across these
resources. So while assigning VM to PM in VBP problem, the demand across each
dimension in VM should not cross remaining capacity across each respective dimension
in PM. This restriction across each dimension in each individual PM makes this
assignment less liberal. FF/FFD and its variants are primary heuristics to solve this
problem. Some weight functions are applied to the demands of VM across each
dimension to get a scalar value. Applying weights have other advantages also. If
mentioning resource demand across few particular dimensions is not important (say PM
has sufficient resources along few dimensions) then problem can be reduced in lesser
number of dimensions or in single dimension. If allocation is to be favoured towards a
subset of resources then weights in other dimensions can be kept lower. So weights help
in moulding the solution as per requirement (Zhang et al., 2019).

6.2 Uniqueness of work

The uniqueness of proposed work is that both of the proposed heuristics are uniquely
efficient in terms of speed and PMs used. Heuristics have been tested upon wide range of
datasets. Most of the works by researchers in this field have been tested with PlanetLab
datasets only, but we have tested our heuristics on low workload, medium workload and
high workload and PlanetLab datasets. The reason is that PlanetLab includes datasets of
few prominent datacentres only; but cloud computing has penetrated into small and
medium level enterprises also. So, workloads of organisations vary from low to high. Our
work has been tested to be more efficient than others work in al test cases. We have
presented this model for each and every type of workload datacentres. Other uniqueness
of our work is that while other works have concentrated on either resource optimisation
or time efficiency of their heuristics; we have taken both of these aspects into
consideration. Another specialty of our work is that we have considered two resources
(processor and memory) into consideration while most of previous works have taken
single resource.

6.3 Sudying existing FFD variants

Greedy algorithms have come up with promising candidates for solving single dimension
bin packing problems. One of the heuristics which has been used by researchers is
FF/FFD with several variants. By assigning some appropriate values (weights) to
multidimensions, we can generate FFD for multidimensiona bin packing problem too.
Two broad categories of variants used by researchers are first fit decreasing product
(FFDP) and first fit decreasing sum (FFDS).

6.3.1 First fit decreasing product

Here product of dimensions of vector is taken and then sorted in decreasing order. Then
vectors in decreasing order are assigned to bins.
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Product (v) = H j<=d V]

6.3.2 First fit decreasing sum

Here sum of dimensions of vector is taken and then sorted in decreasing order. Then
vectors are assigned to bins in decreasing order. But in FFDS weights are used to mould
solution.

am)=3 j<=d (bjV)

Values of bj depend upon how we want to modulate dimensions. Value of bj can be taken
as average demand across dimension j in al VM candidates.

i.e,bj=1/ an =1ton(Vj") acrossdimension j.

When value of bj is taken as average across all dimensions, we call it FFD average
summation (FFDAVG). Son and Buyya (2019) shows FFDS showed the best
performance.

6.3.3 First fit decreasing dot product (FFDDP)

Let at time t, R(t) denote the remaining capacity vector of bin under consideration. Then
this agorithm places that VM first which has highest value of the weighted dot product

D ibi (V) R

6.3.4 Norm-based greedy approach (NBGA)
This approach calculates Zj bj(Vi" —R(t)j)?> and places the VM to PM in the

increasing order of thisvalue.

7 Proposed heuristicsfor VM sallocationsin cloud computing
environment

Datacentres host PMs, which host VMs to execute incoming workloads. Here we propose
two heuristics for VMs to PMs mapping.

7.1 Proposal one— correlation-based first fit decreasing

One of our proposed heuristics follows correlation-based approach. We name it as
correlation-based first fit decreasing (CBFFD). We have taken the case of two
dimensional RR vector (processor and memory). If requirement along two dimensions are
correlated, i.e., requirements along both dimensions are in same range, we delay that VM
for placement. VM with least correlation (largest difference of RRs aong two
dimensions) will be taken first for allocation otherwise at later stage such VM will create
problem due to mismatch in remaining vector and RR vector. Propose heuristics first
takes difference between RRs of VM along both dimensions. Then our algorithm sorts
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VM in the decreasing order of difference between RRs of VM along both dimensions.
Let at timet, D[r] = absolute value of (VR1 — VR2) for al VMs and R1 and R2 are RRs
of VMs aong two dimensions, i.e., along two resources (processor and memory). r varies
from 1 to maximum number of VMs. Outline of algorithm is given below.

1 Input: List of VMsand PMs

Output: Mapping from VM list to PM list

Calculate difference between RRs along both dimensions
Sort VMsin the decreasing order of the difference
Repeat step 6 for each VM in sorted VMList

Repeat step 7 for each PM in PMList

N O o B~ WD

If (VM requirements along each dimension is less than remaining capacity along
respective dimension in PM) then

a adlocate VM to PM
b  update remaining vector in PM
c takenext VM (next iteration in step 5)

8 Exit.

7.2 Proposal two —first fit increasing product

Our second proposed heuristic is first fit increasing product (FFIP).We calculate product
of RR aong both dimensions for each VM. Then VMs are sorted in increasing order of
this product value and alocation to VMs to PMs is done in increasing order of this
product value. FFIP has performed outstandingly for low RR. Outline of algorithm is
given below.

1 Input: List of VMsand PMs

Output: Mapping from VM list to PM list

Calculate product of the RRs along both dimensions D[r] = VR1 * VR2
Sort VMsin the increasing order of the product

Repeat step 6 for each VM in sorted VMList

Repeat step 7 for each PM in PMList

N o o~ WDN

If (VM requirements along each dimension is less than remaining capacity along
respective dimension in PM) then

a dlocate VM to PM
b  update remaining vector in PM
c takenext VM (next iteration in step 5)

8 Exit.



290 V. Sharma and G.M.S. Srivastava
8 Energy efficient hotspot mitigation

In cloud datacentres, RR of VMs may increase over time. When RR increases, increased
demand is first satisfied by the PM holding that VM. But when PM is unable to satisfy
the increased demand of VM, it is called hotspot. Then hotspot mitigation is done by
moving VM to some other PM which has sufficient available capacity of resources. The
judicious choice of choosing destination PM has major role in decreasing the energy
consumption and overall enhancement in performance. In the present work, we have
proposed two algorithms. Our algorithms are variants of MOM algorithm proposed by
Beloglazov et al. (2016).

8.1 Proposed first mitigation algorithm (Miti)

In our first hotspot mitigation algorithm, we pick PM which is observing hotspot. Then
algorithm replaces the VMs in that PM until it reaches to state where no further VM can
be placed. To place remaining VMs instead of switching on new PM, search starts from
first PM once again to check if any of PM can accommodate the remaining VMs of
overloaded PM. This strategy is followed because it is also possible that some PMs may
be having necessary resources to accommodate few of VMs of overloaded PM. If none of
already running PM can satisfies the RRs of VMs in question then only new PM is
switched on. The first proposed algorithm for hotspot mitigation is presented ahead.

Algorithm Miti
1 Input: PM with hotspot
2 Output: Reallocation of those VMs
3 Repeat steps4-7forj=1ton /[ for total number of PMs
4 If PM[]j] is having hotspot, then
1 Extract VMsresidingin PM in VMList Il suppose total s
5 Repeat step 6 for each VM[i] in VMList (i variesfrom 1 to m, where m istotal no. of VMs)
6 If current PM can meet the resource requirements of current VM in consideration then

1 Placeitincurrent PM

2 Keepitsentry in alocation table allocation[i][j] =1  // dlocation[i][j] stores VM to
PM mapping

3 Set VM[i].vmplaced = True
Else
1 Repeatfork=1ton /I search @l PMs
If PM[K] can meet resource requirements of any leftover VMs then
a PlaceVM incurrent PM
b Makeentry in allocation table allocation[i][k] = 1
7 Repeatstep8fork=1tos
If VM[i].vmplaced <> True, then
1  Switch on new PM
2 Allocate current VM to new PM
3  Makeentry in alocation table
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4  VMJi]. vmplaced = True
9 Exit

8.2 Proposed second mitigation algorithm (Miti1)

In second algorithm, we take difference of RRs along both dimensions of those VMs. Let
it is denoted by d. Then we sort those VMs in decreasing order of this value. Larger the
difference of RRs along both dimensions, lesser is the correlation between them. It means
we will reallocate VMs with high value of d first. Then we map these VMs in decreasing
order of value d on PM which was having hotspot. We alocate as many VM so that PM
is not overloaded. For those VMs which could not be placed, we start searching PM from
first one to find if any PM has sufficient leftover resources along respective dimensions
to satisfy RR of remaining VMs. If such PMs exist then VMs are placed in those PM
otherwise new PM is switched on to accommodate leftover VMs. We have taken memory
RR in MB/GB and CPU requirement in percentage of total CPU share available. The
outline of algorithm is presented below.

Algorithm Mitil
1 Input: PM with hotspot

2 Output: Reallocation of those VMs
3 Repeat steps4—7forj=1ton // n for total number of PMs
4 If PMJj] is having hotspot, then
1 Extract VMsresidingin PM /I suppose total no. of VMsin current PM isr
2 Calculate correlation along two /I (correlation is difference of resource
resource dimensions requirement along two dimensions// i.e.,

d = VM[i].CPU - VM[i].MEM)
3 Arrangethose VMsin decreasing order of din VMlist.
5 Repeat for each VM[i] in VMList Il suppose total no. of VMsin systemism
1 Placeitincurrent PM
2 Keepitsentry inallocation table alocation[i][j] = 1
Else
1 Repeatfork=1ton /I search @l PMs
If PM[K] can meet resource requirements of any leftover VMs then
a PlaceVM in current PM
b Makeentry in allocation table alocation[i][k] = 1
6 Repeatstep7fork=1tor
7 1f VM[i]. vmplaced <> True, then
1 Switch on new PM
2 Allocate current VM to new PM
3 Makeentry in alocation table
4  VM[i]. vmplaced = True
8 Exit
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9 Empirical evaluation

9.1 Proposed heuristics for VMs allocationsin cloud computing environment

We have written an ad hoc simulator (VMSmul) to analyse different variants of FF/FFD
and our proposed heuristics. VMSmul has been designed to simulate cloud computing
environment. Reguests for resources by VMs have been generated randomly in VMSmul.
We have taken wide spectrum of requests for resources which match cloud environment.
We have examined variety of cases. First we have divided our simulation process for four
categories of resource demand.

1 Low resource demand (up to 15% of total available resource).
2 Arbitrary (from least to maximum).

3 Withinrealistic range for cloud environment (between 15% and 60% of total
available resource along both dimensions).

4  PlanetLab data.

In first three cases we have taken two subcases — first of incoming request of 500 VMs
and second of 1,000 VMs. Resource demand by VMs have been generated randomly as
per requirement of first three cases. So we have six cases (3 * 2) in al. For each case,
simulation has been run for five times and then average of data has been taken. For each
case two Bar charts have been drawn: one for number of comparisons donein VM to PM
mapping and second for number of PMs used. RR are taken in percentage of total
available resource.

Casel No. of VMs= 500, 0< RR<= 15%

Table 2 shows that for Case 1, FFDDP, FFDAVG, FFDP, FFDSUM, FFIP need 23 PMs
followed by CBFFD which require 22 PMs, followed by NBGA which needs 27 PMs.
Average number of comparisons for VMs to PMs mapping are 4885 for FFIP, 5513 for
CBFFD, which are much less as compared to NBGA, FFDDP, FFDAVG, FFDP,
FFDSUM, which require on average 7,100 comparisons.

Table2 Simulation results for Case 1 (n = 500, 0 < RR <= 15%)

Trial | Trial 1l Trial 11 Trial IV Trial V Average
@ 2 o 2 o 2 o 2 o 2@ ©_ Ba
Heuristics Eg 5 8 E@ 5 8 Eg‘a@ Eg“a.gﬁ_ Eg 5 8 %g e 8
5868 ©8g8 5498 6493 T438 pu 2§
ST E S fE g E ST fE ST “E HE TE
z 8 2 8 2 8 2 g8 Z 8 2% 28
NBGA 27 7108 27 7205 27 6955 26 6837 26 6848 27 6991
FFDDP 23 70288 24 7275 23 7057 23 6988 23 6975 23 7,117
FFDAVG 23 70288 24 7275 23 7057 23 6988 23 6975 23 7,117
FFDP 23 7230 24 7233 23 6997 23 6941 23 6904 23 7,061
FFDSUM 23 7262 24 7270 23 7058 23 6990 23 6977 23 7,111
FFIP 24 4989 24 5023 23 4924 23 4638 23 4853 23 4885
CBFFD 22 5487 23 5480 22 5625 23 5497 22 5479 22 5513
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For low RR, our proposed heuristics have given much better performance with FFIP
taking least number of comparisons. Comparing statistically, Figure 2 and Table 2 show
that FFIP is about 32% and CBFFD is about 23% faster as compared to their
counterparts. FFDDP and FFDAVG are much dower and giving same level of
performance. Among all heuristics (other than ours), NBGA is little bit better in terms of
number of comparisons performed. Figure 3 and Table 2 depict that NBGA has used
about 15% more PMs as compared to best counterparts. CBFFD has used about 18% less
PMs as compared to NBGA. FFIP is at par with others while CBFFD is best. FFDDP,
FFDAVG, FFDP and FFDSUM have used same number of PMs.

Figure2 No. of comparisonsfor Case 1 (n = 500, 0 < RR <= 15%) (see online version
for colours)

Figure3 No. of PMsused for Case 1 (n = 500, 0 < RR <= 15%) (see online version for colours)

Case2 No. of VMs= 1,000, 0< RR<= 15%

Table 3 shows that for Case 2, FFIP and CBFFD have taken 47 and 45 PMs respectively.
FFDSUM need 47 while FFDDP, FFDAVG, FFDP need 46 PMs followed by NBGA
which needs 52 PMs. Talking about efficiency, FFIP and CBFFD are most efficient ones
in terms of number of comparisons followed by remaining al with an average number
comparisons of about 27,955 for VMs to PMs mapping. FFIP has performed 18,809 and
CBFFD has performed 21,491 comparisons.
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Figure 4 and Table 3 illustrate that FFIP is 33% and CBFFD is 24% faster as compared to
its counterparts. FFDDP and FFDAVG have performed same number of comparisons.
Among al heuristics (other than ours) NBGA has performed comparatively lesser
number of comparisons. Figure 5 and Table 3 show that CBFFD has taken about 5% less
PMs as compared to their best counterparts and about 12% lesser than NBGA, while
FFDDP, FFDAV G and FFDP have used same number of PMs, i.e., 46. FFIP is amost at
par with others. NBGA has taken maximum number of PMs, about 12% more than the
best.

Figure4 No. of comparisonsfor Case 2 (n = 1,000, 0 < RR <= 15%) (see online version
for colours)

Figure5 No. of PMsused for Case 2 (n = 1,000, 0 < RR <= 15%) (see online version
for colours)

Case3 No. of VMs = 500, arbitrary RR

Arbitrary RRs have been generated between 0 and 100% of available resources using
random function. Table 4 shows that for Case 3, CBFFD has used 252 PMs followed by
FFDDP, FFDAVG, FFDP, FFDSUM, which have used around 260 PMs followed by
NBGA which has used 302 PMs which is followed by FFIP which has used 314 PMs.
Taking of average number of comparisons, CBFFD has performed fastest with 60,983
comparisons followed by FFIP with 65,194 which is followed by FFDDP, FFDAVG,
FFDP, FFDSUM with about 65,200 comparisons, which has been followed by NBGA
with 69,075 comparisons.
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Figure 6 and Table 4 show that CBFFD has performed 12% faster than NBGA and 8%
faster as compared to remaining heuristics. FFIP has performed 6% faster as compared to
NBGA and at par with remaining heuristics. FFDDP and FFDAV G have shown exactly
same performance while FFDP and FFDSUM are amost near to them. Our CBFFD
heuristicsis best in this case. Figure 7 and Table 4 show that CBFFD has taken about 3%
lesser number of PMs as compared to its best counterparts and 16% lesser number of
PMs as compared to NBGA. FFDDP, FFDSUM and FFDAV G have taken same number
of PMs.

Figure6 No. of comparisons for Case 3 (n = 500, arbitrary RR) (see online version for colours)

Figure7 No. of PMsused for Case 3 (n = 500, arbitrary RR) (see online version for colours)

Case4 No. of VMs = 1,000, arbitrary RR

Table 5 shows that CBFFD, taking 497 PMs, has performed more efficiently as compared
to al other counterparts. Taking of speed of heuristic, CBFFD is on top with 243,234
comparisons as compared to average comparisons of about 257,000 of other heuristics.

Figure 8 and Table 5 show that CBFFD has performed 13% faster as compared to
NBGA and 6% faster as compared to othersin terms of number of comparisons. FFIP has
performed about 1% slower as compared to its counterparts. FFDDP and FFDAV G have
done same number of comparisons while FFDP and FFDSUM are approaching them.
Figure 9 and Table 5 show that CBFFD has taken about 2.5% lesser number of PMs to
alocate incoming VMs as compared to its best counterparts and about 16% lesser
number of PMs as compared to NBGA. FFDDP and FFDAVG have used same number
of PMs, while FFDP and FFDSUM are approaching them in terms of number of PMs
used.
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Figure8 No. of comparisons for Case 4 (n = 1,000, arbitrary RR) (see online version for colours)

Figure9 No. of PMsused for Case 4 (n = 1,000, arbitrary RR) (see online version for colours)

Case5 No. of VMs= 500, 15% <= RR <= 60%

Table 6 shows that CBFFD has performed more efficiently than NBGA with CBFFD
occupying 186 PMs while NBGA taking 218 PMs. It is also more efficient than others
which are taking on average 191 PMs. In terms of number of comparisons FFIP and
CBFFD have performed much faster as compared to their counterparts. FFIP has done
46,018 comparisons, CBFFD has performed 47,297 comparisons while on average the
heuristics except NBGA have performed about 53,300 comparisons. NBGA has not
performed well in this case, performing 57,200 iterations.

Figure 10 and Table 6 show that CBFFD has performed about 18% lesser number of
comparisons as compared to NBGA and 12% lesser as compared to other counterparts.
FFIP has performed about 20% lesser number of comparisons as compared to NBGA and
14% lesser as compared to its counterparts. FFDDP and FFDAVG have done same
number of comparisons while FFDSUM is approaching them. FFDP has performed few
more comparisons (about 0.5%) as compared to FFDP and FFDAVG. Figure 11 and
Table 6 show that CBFFD has used about 16% lesser number of PMs than NBGA to
allocate VMs and about 3% lesser number of PMs as compared to others. FFIP is at par
with NBGA. FFDDP, FFDAVG, FDDP and FFDSUM have used same number of PMs
to allocate VMs.
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Figure 10 No. of comparisonsfor Case 5 (n = 500, 15% <= RR <= 60%) (see online version
for colours)

Figure1l No. of PMsused for Case 5 (n =500, 15% <= RR <= 60%) (see online version
for colours)

Case6 No. of VMs= 1,000, 15% <= RR <= 60%

Data in Table 7 shows that CBFFD has performed more efficiently than NBGA, with
CBFFD taking 377 PMs and NBGA taking 429 PMs. Other heuristics on average have
taken 379 PMs. Talking of number of comparisons, our both heuristics have performed
much faster as compared to other heuristics with FFIP performing 180,829 comparisons
and CBFFD performing 186,834 comparisons. Other heuristics, on average, have
performed about 212,600 comparisons.

Figure 12 and Table 7 show that CBFFD has performed 18% lesser number of
comparisons as compared to NBGA and 13% lesser number of comparisons as compared
to its other counterparts. FFIP has performed 21% faster as compared to NBGA and 15%
faster as compared to others. FFDDP and FFDAVG have done same number of
comparisons while FFDP and FFDSUM are approaching them. Figure 13 and Table 7
show that CBFFD has taken about 12% lesser PMs as compared to NBGA and about 1%
lesser number of PMs as compared to other counterparts. FFIP is at par with NBGA.
FFDDP and FFDAV G have used same number of PMs, while FFDP and FFDSUM are
approaching them in terms of number of PMs used.
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Figure12 No. of comparisonsfor Case 6 (n = 1,000, 15% <= RR <= 60%) (see online version
for colours)

Figure13 No. of PMsused for Case 6 (n = 1,000, 15% <= RR <= 60%) (see online version
for colours)

Case 7 Smulation of various heuristics with workload traces from PlanetLab

Data in Table 8 shows that our both heuristics are much faster as compared to other
heuristics with FFIP performing 38,648 comparisons and CBFFD performing 40,643
comparisons. Other heuristics, on average, have performed about 41,077 comparisons.
Taking of number of PMs used, CBFFD is close to its counterparts.

Figure 14 and Table 8 show that CBFFD has performed about 3% lesser number of
comparisons as compared to NBGA and about 2% lesser number of comparisons as
compared to its other counterparts. FFIP has performed 7.22% faster as compared to
NBGA and 6% faster as compared to others. FFDDP and FFDAVG have done same
number of comparisons while FFDP and FFDSUM are approaching them. Figure 15 and
Table 8 show that CBFFD has used same number of PMs as that of NBGA and is at par
with others. FFIP has taken about 8% more PMs as compared to its counterparts.
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Simulation results for workload traces from PlanetL ab
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Figure 14 Number of comparisons for PlanetLab workload traces (see online version for colours)

Figure15 Number of PMs used for PlanetLab workload traces (see online version for colours)

9.2 Hotspot mitigation

We have run our algorithms in various scenarios. We have taken six cases with various
ranges of demand and increase in demands. Though in MOM algorithm, single resource
is taken but we have taken two resources in our algorithms. We have written an ad hoc
simulator (HotSmul) in C language to analyse our algorithms and compared the results
with MOM algorithm given by Beloglazov et a. (2016). Hotsimul has been designed to
simulate cloud computing environment. Request for resources by VMs has been
generated randomly in HotSmul. We have taken wide spectrum of requests for resources
which match cloud environment. We have compared our algorithms with MOM and also
compared our algorithm with variant of MOM (when taken two resources) (MOM1)
(Beloglazov et al., 2016). In our simulator, we have assumed that eighty PMs are
available which can be increased as needed.
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Case 1.1 Demand of resources (max 20% of total available resources) and
increase in demand (max 20% of demand)

As Table 9 shows, in this case our both agorithms are performing better than their
counterparts. In this case as Figure 16 and Table 9 show that before occurrence of hotspot
average number of PMs used is 12%. After hotspot mitigation our first algorithm (Miti)
has used average of 13% and second algorithm (Miti1) has used average of 13% while
MOM and MOM 1 have used 13% and 22% respectively.

Table9 Comparison of our hotspot mitigation algorithms and others for Case 1.1

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 365 9 10 10 16 9

2 332 8 9 9 16 9

3 337 8 10 10 16 10
4 356 9 10 10 18 10
5 364 9 10 10 17 10
6 312 7 8 8 14 8

7 351 8 9 9 16 9

8 333 8 16

9 345 9 11 11 18 10
10 322 8 9 10 16

11 360 9 10 10 16 9
12 341 8 11 11 18 10
13 368 9 10 10 16 10
14 334 8 9 9 16 9
15 362 9 10 10 18 10
16 377 9 10 10 17 10

Average 843=12% 91=13% 9.75=13% 165=22% 9.43=13%

Figure 16 Number of PMs used after hotspot mitigation for Case 1.1 (see online version
for colours)
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Case 1.2 Demand of resources (max 20% of total available resources) and
increase in demand (max 50% of demand)

Figure 17 and Table 10 show that before occurrence of hotspot average number of PMs
used is 27%. After hotspot mitigation our first algorithm (Miti) has used 35% of PMs and
second algorithm (Mitil) has used 34% of PMs, while MOM and MOM 1 have used 37%
and 58% of PMs respectively. Miti algorithm has taken 2% less PMs than MOM and
23% less PM s than MOM 1. Miti1 algorithm has taken 3% less PMs than MOM and 24%
less PMsthan MOM1.

Table1l0  Comparison of our hotspot mitigation algorithms and others for Case 1.2

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 882 19 25 26 41 23
2 768 18 23 24 39 22
3 819 19 25 26 41 24
4 884 21 29 30 48 27
5 857 21 29 30 47 28
6 848 20 27 28 46 26
7 953 21 27 29 46 28
8 773 18 24 24 40 22
9 981 22 30 32 51 29
10 843 20 25 26 44 25
11 943 22 30 32 50 30
12 931 21 28 29 46 26
13 985 23 32 33 51 31
14 912 21 30 31 ivg 29
15 883 19 25 26 43 23
16 829 19 26 27 43 25
Average 20.25=27% 27.18=35% 28.31=37% 45.18=58% 26.12=34%

Figure17 Number of PMs used after hotspot mitigation for Case 1.2 (see online version
for colours)
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Case 1.3 Demand of resources (max 20% of total available resources) and
increase in demand (max 80% of demand)

In this case as Figure 18 and Table 11 show that before occurrence of hotspot average
number of PMs used is 27%. After hotspot mitigation our first algorithm has used 39%
and second algorithm has used 37% of PMs while MOM and MOM 1 have used 40% and
62% of PMs respectively. Our first algorithm (Miti) has taken 1% less PMs than MOM
and 23% less PMs than MOM1. Our second algorithm (Mitil) has taken 3% less PMs
than MOM and 25% less PMs than MOM 1.

Tablell  Comparison of our hotspot mitigation algorithms and others for Case 1.3

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 821 20 30 29 47 26
2 871 20 29 30 a7 26
3 942 22 32 32 50 30
4 861 19 29 30 47 27
5 907 20 30 31 47 27
6 837 20 30 31 48 28
7 923 21 30 30 49 28
8 896 21 32 32 49 29
9 922 21 31 32 50 28
10 896 23 36 36 55 33
11 929 21 34 33 52 29
12 861 21 32 33 51 30
13 921 21 30 32 49 29
14 860 21 32 33 51 31
15 700 16 23 24 37 23
16 815 19 31 32 47 28
Average 20.37=27% 30.68=39% 31.25=40% 485=62% 28.25=37%

Figure 18 Number of PMs used after hotspot mitigation for Case 1.3 (see online version
for colours)



Correlation-based heuristics and evaluation of existing greedy heuristics 309

Case 2.1 Demand of resources (max 50% of total available resources) and
increase in demand (max 20% of demand)

In this case as Figure 19 and Table 12 illustrate that before occurrence of hotspot, average
number of PMs used is 28%. After hotspot mitigation our first algorithm has used 35%
and second algorithm has used 33% of PMs, while MOM and MOM 1 have used 33% and
55% of PMs respectively. Our first algorithm has taken 2% more PMs than MOM and
20% less PMs than MOM1. Our second algorithm has taken same number of PMs as
MOM but 22% less PMs than MOM 1.

Table12  Comparison of our hotspot mitigation algorithms and others for Case 2.1

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 7 21 25 26 42 25
2 863 23 28 28 44 27
3 850 23 32 31 46 27
4 792 22 24 25 41 25
5 846 23 28 29 44 27
6 770 20 25 27 41 25
7 908 24 31 32 47 30
8 815 22 26 27 41 25
9 799 22 28 27 41 25
10 812 22 29 27 43 26
11 929 23 27 27 46 25
12 841 22 27 28 46 26
13 784 20 27 26 41 23
14 809 20 30 27 42 25
15 906 23 28 28 48 26
16 710 19 24 26 39 23
Average 21.81=28% 27.43=35% 25.87=33% 43.25=55% 25.6=33%

Figure19 Number of PMs used after hotspot mitigation for Case 2.1 (see online version
for colours)
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Case 2.2 Demand of resources (max 50% of total available resources) and
increase in demand (max 50% of demand)

In this case as Figure 20 and Table 13 show that before occurrence of hotspot, average
number of PMs used is 29%. After hotspot mitigation our first algorithm (Miti) has used
40% and second algorithm (Mitil) has used of 38% of PMs while MOM and MOM1
have used 42% and 63% of PMs respectively. In this case our first algorithm (Miti) has
taken 2% less PMs than MOM and 23% less PMs than MOM1. Our second algorithm
(Miti1) has used 4% less PMs than MOM and 25% less PMs than MOM 1.

Table1l3  Comparison of our hotspot mitigation algorithms and others for Case 2.2

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 841 22 31 32 48 31
2 815 22 33 34 51 32
3 856 22 32 32 50 29
4 917 24 33 36 55 34
5 795 21 34 32 48 29
6 833 21 30 32 46 28
7 877 23 31 32 50 32
8 913 24 35 33 53 29
9 785 20 29 30 45 26
10 877 23 31 31 50 32
11 820 23 32 33 51 29
12 934 24 35 35 54 31
13 814 21 28 29 46 28
14 77 21 33 33 438 29
15 779 20 26 27 44 26
16 860 24 36 38 56 35
Average 22.18=29% 31.81=40% 3243=42% 49.68=63% 30=38%

Figure20 Number of PMs used after hotspot mitigation for Case 2.2 (see online version
for colours)
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Case 2.3 Demand of resources (max 50% of total available resources) and
increase in demand (max 80% of demand)

Figure 21 and Table 14 show that before occurrence of hotspot, average number of PMs
used is 29%. After hotspot mitigation our first algorithm (Miti) has taken 49% and
second algorithm (Mitil) has taken 44% of PMs, while MOM gives 49%, MOM1 gives
73%. In this case our first algorithm (Miti) has taken same number of PMs as MOM but
24% less PM's than MOM 1. Second algorithm (Mitil) has taken 5% less PMs than MOM
and 29% less PMs than MOM 1.

Table1l4  Comparison of our hotspot mitigation algorithms and others for Case 2.3

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 809 22 38 38 57 36
2 875 23 42 40 60 35
3 869 22 38 36 56 33
4 836 21 35 36 55 34
5 732 20 36 36 51 31
6 817 22 37 38 57 35
7 821 22 39 38 58 35
8 886 23 35 36 57 34
9 855 22 40 40 56 33
10 858 22 40 38 58 33
11 945 24 40 41 62 38
12 896 23 39 40 59 38
13 873 24 43 42 62 38
14 844 23 40 41 59 37
15 920 24 41 41 61 36
16 770 21 37 37 54 34
Average 2237=29% 38.75=49% 38.62=49% 576=73% 35=44%

Figure21 Number of PMs used after hotspot mitigation for Case 2.3 (see online version
for colours)
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Case 3.1 Demand of resources (max 60% of total available resources) and
increase in demand (max 20% of demand)

Figure 22 and Table 15 show that before occurrence of hotspot average number of PMs
used is 34%. After hotspot mitigation our first algorithm (Miti) has taken 42% and
second algorithm (Mitil) has taken 40% of PMs, while MOM and MOM1 have used
44% and 64% of PMs respectively. In this case our first agorithm (Miti) has taken 2%
less PMs than MOM and 22% less PMs than MOM 1. Our second algorithm (Mitil) has
taken 4% less PMs than MOM and 24% less PM s than MOM 1.

Table1l5  Comparison of our hotspot mitigation algorithms and others for Case 3.1

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 1,029 26 32 34 53 32
2 1,029 29 33 35 49 33
3 1,018 26 32 32 51 30
4 1,037 27 33 35 54 33
5 998 28 33 36 56 33
6 962 25 33 33 46 30
7 978 27 32 33 51 30
8 1,040 27 33 35 52 32
9 944 25 29 31 45 29
10 944 25 31 32 49 28
11 1,055 28 33 35 54 32
12 1,042 30 35 37 54 35
13 1,000 28 36 35 53 34
14 941 27 31 34 51 30
15 937 26 36 34 48 31
16 1,101 28 34 35 53 33
Average 271=34% 3287 =42% 34.12=44% 51.18=64% 31.56=40%

Figure 22 Number of PMs used after hotspot mitigation for Case 3.1 (see online version
for colours)
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Case 3.2 Demand of resources (max 60% of total available resources) and
increase in demand (max 50% of demand)

In this case as Figure 23 and Table 16 show that before occurrence of hotspot average
number of PMs used is 34%. After hotspot mitigation our first algorithm (Miti) has used
53% and second agorithm (Mitil) has used 48% of PMs, while MOM and MOM1 have
used 54% and 79% of PMs respectively. Our first algorithm (Miti) has used 1% less PMs
than MOM and 26% less PMs than MOM1. Our second algorithm (Mitil) has used 6%
less PMs than MOM and 31% less PMsthan MOM 1.

Table1l6  Comparison of our hotspot mitigation algorithms and others for Case 3.2

S no. Comparisons PM used Miti MOM MOM1 Mitil
1 998 25 36 38 57 35
2 997 26 40 12 62 36
3 1006 27 43 43 66 38
4 963 26 46 41 61 37
5 1040 29 46 a7 69 43
6 1073 28 40 43 62 39
7 923 26 40 42 61 38
8 1035 27 40 41 62 37
9 1043 27 40 44 63 39
10 1045 30 53 48 68 44
11 1089 29 50 49 68 41
12 906 25 37 38 58 33
13 983 24 33 35 53 31
14 1059 28 50 a4 67 39
15 1100 29 42 43 67 42
16 1039 25 36 37 58 33
Average 26.92=34% 42=53% 42.18=54% 62.62=79% 37.81=48%

Figure 23 Number of PMs used after hotspot mitigation for Case 3.2 (see online version
for colours)
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Comparison of our hotspot mitigation algorithms and others for Case 3.3

Table17
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Case 3.3 Demand of resources (max 60% of total available resources) and
increase in demand (max 80% of demand)

In this case as Figure 24 and Table 17 show that after occurrence of hotspot, average
number of PMs used is 35%. After hotspot mitigation our first algorithm has used 63%
PMs and 97.5% of VMs have been packed in available PMs and second algorithm has
used 52% PMs and 98.75% of VMs have been packed in available PMswhile MOM 1 has
used 59% PMs and 97.5% of VMs have been packed in available PMs, MOM2 has used
81% PMs and 97.5% of VMs have been packed in available PMs. Our first algorithm
(Miti) has taken 4% more PMs than MOM and 18% less PMs than MOM1. Our second
algorithm (Mitil) has taken 7% less PMs than MOM and 29% less PMs than MOM1.
Talking about number of VMs placed after migration, Figure 25 and Table 17 show that
our second agorithm (Mitil) has placed 1% more VMs. Our both algorithm have
performed better than MOM and MOM 1. Our second algorithm is better than remaining
al algorithmsin al cases. Our first algorithm is better than MOM and MOM 1 in all cases
except Cases 2.1 and 3.3.

Figure 24 Number of PMs used after hotspot mitigation for Case 3.3 (see online version
for colours)

Figure 25 Number of VMs placed after hotspot mitigation for Case 3.3 (see online version
for colours)

9.3 SLAviolation

Here we discuss the SLA violation caused by these algorithms in simulation. Results
obtained after simulation are presented in percentage in Table 18 and displayed in
Figure 26. Table 18 and Figure 26 show that Miti algorithm has caused 1.37% of SLA
violation which is least among all algorithms. Miti1l has caused 4.50% less SLA violation
than MOM but 10.84% more than MOM 1.
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Table18  SLA violation in different algorithms

S no. Miti (%) MOM (%) MOM1 (%) Miti1(%)
1 1.25 28.50 13.50 24.255
2 1.50 29.75 12.75 26.50
3 1.25 28.50 14.75 22.25
4 1.25 29.50 12.50 19.75
5 1.50 27.75 14.50 23,50
6 1.60 26.50 1250 25,50
7 1.25 28.75 13.75 26.25
8 1.25 29.75 12.75 25.25
9 1.50 29.50 13.50 24.75

Average=137%  Average=28.72% Average=13.38% Average=24.22%

Figure26 SLA violationin different algorithms (see online version for colours)

Our hotspot mitigation agorithms (Miti and Mitil) try to use minimum number of PMs
after mitigation to make mitigation process energy efficient. During hotspot mitigation
our algorithms try to minimise number of PMs used after hotspot mitigation. Both
algorithms have shown promising results in direction of energy efficiency and aso in
establishing acceptability of cloud computing paradigm.

10 Summary

As clouds have strong business perspective also, our heuristics has been tested as a prime
aternate options for VMs to PMs mapping Heuristics in proposed work reduces the
number of PMs used, thus increase ROI for service provider. Our FFIP heuristic
performed remarkably well when RR islow. It is about 32% faster as compared to others
and at par with others in terms of PMs used. Our second heuristics, CBFFD remained
best throughout simulation. It is 24% faster for low RR and 10% faster for average and
arbitrary RRs while taking 2-3% lesser number of PMs as compared to its best
counterparts. CBFFD is about 15% more efficient as compared to NBGA in term of
number of PMs used. Among other heuristics, FFDDP and FFDAVG performed about
0.5-1% lesser comparisons but used 0.5-1% more number of PMs as compared to others.
For average load these are 14-15% faster but use more number of PMs. CBFFD and
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FFIP can be seen as promising candidates for all bin packing problems and for allocating
VMs to PMs in energy efficient manner in cloud computing environment. For low RR,
NBGA performed 2% lesser comparisons but it used 12% more PMs as compared to its
counterparts. Our hotspot mitigation algorithm (Miti) is taking 1.42% less PMs than
MOM agorithm and 23% less PMs than MOM1 algorithm after hotspot mitigation.
Second agorithm (Mitil) is taking 3.57% less PMs than MOM and 25.71% less PMs
than MOM1 after hotspot mitigation. In al cases except last case al VMs were placed
after hotspot mitigation. In our last case when input is 60% (max) and increase in demand
is 80% (max), then our second algorithm (Mitil) placed 98.75% of VMs as compared to
97.5% for other agorithm after hotspot mitigation.

11 Futurework

Proposed heuristics would perform with greater efficiency if it were able to predict live
incoming workload (demand of various resources). For that we could train our heuristics
using machine learning techniques like decision tree, neural networks.
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