Study on flow field and temperature field characteristics of gas-liquid two-fluid snowmaking nozzle
by Ya-Nan Sun; Dian-Rong Gao; Zong-Yi Zhang; Jian-Hua Zhao; Bo Chen
International Journal of Hydromechatronics (IJHM), Vol. 3, No. 4, 2020

Abstract: A snowmaking nozzle based on the principle of supersonic speed of Laval nozzle is proposed, and the influence of its operation and structural parameters on flow field and temperature field characteristics is analysed. The results show that the gas-liquid mixture velocity outside the nozzle outlet increases with the increase of air inlet pressure, water inlet pressure and throat diameter, decreases with the increase of distance between water inlet and nozzle outlet. The gas-liquid mixture temperature outside the nozzle outlet increases as water inlet pressure and distance between water inlet and nozzle outlet increases, decreases as air inlet pressure and throat diameter increases. As gas-liquid pressure ratio increases, the gas-liquid mixture velocity outside the nozzle outlet tends to decrease first, then increase and then decrease, while its temperature tends to increase first, then decrease and then increase. When gas-liquid pressure ratio α = 3, this nozzle has the best performance.

Online publication date: Mon, 04-Jan-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com