
Int. J. Embedded Systems, Vol. 14, No. 1, 2021 9

Copyright © The Author(s) 2020. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the
CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Mining constant information for readable test data
generation

Mingzhe Zhang, Yunzhan Gong, Yawen Wang* and
Dahai Jin
State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications,
Beijing 100876, China
Email: zmz420@126.com
Email: gongyz@bupt.edu.cn
Email: wangyawen@bupt.edu.cn
Email: jindh@bupt.edu.cn
*Corresponding author

Abstract: Automated test data generation tools produce test data that can achieve high coverage
faster than test data generated manually by a tester. However, the test data generated by
automated tools has been shown to not help developers find more bugs. The main reason is that it
is difficult for human testers to understand and evaluate the test data. In this paper, an approach is
introduced to automatically generate readable test data, which has been implemented in a tool
called CTS. CTS can mine constant information from projects under testing and obtain heuristic
information by aggregating and rating related constants. CTS adds heuristic information to the
automatic test data generation process to generate test data that is quick and easy for a human to
comprehend and check. Empirical experiments show that the proposed approach can improve the
efficiency of test data generation and generate test data that is more convenient for a human
oracle.

Keywords: test data generation; readable test data; constraint-based testing; CBT; symbolic
execution.

Reference to this paper should be made as follows: Zhang, M., Gong, Y., Wang, Y. and Jin, D.
(2021) ‘Mining constant information for readable test data generation’, Int. J. Embedded Systems,
Vol. 14, No. 1, pp.9–18.

Biographical notes: Mingzhe Zhang received his BE in Computer Science and Technology from
the Shandong Normal University, Jinan, in 2012. He is currently a PhD candidate in the State
Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing. His current research interests mainly focus on software testing and
program analysis.

Yunzhan Gong received his PhD in Computer Science from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, in 1991. He is currently a Professor and a
Supervisor of Doctoral students in the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing. His research interests
include fault tolerant computing and software testing.

Yawen Wang received her PhD in Communication and Information System from the Beijing
University of Posts and Telecommunications, Beijing, in 2010. She is currently an Associate
Professor in the State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing. Her research interests include static
analysis and automated software testing.

Dahai Jin received his PhD in Information Security from the Armored Engineering Institute of
the PLA, Beijing, in 2006. He is currently an Associate Professor in the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing. His research interests include software testing and static analysis.

10 M. Zhang et al.

1 Introduction

Software testing is an important activity in software
development and is widely used to assure software quality
(Panda and Mohapatra, 2017; Pan et al., 2018; Neves et al.,
2016). However, it is also laborious and time-consuming,
and programmers may spend a quarter of their work time
solely on developing testing (Beller et al., 2015; Daka and
Fraser, 2014). Since test data generation is the most
challenging and time-consuming process in software testing,
several automated test data generation tools have been
proposed to reduce the time developers need to spend on
testing.

Automated test data generation approaches mainly focus
on code coverage as a unique goal without accounting for
other relevant factors (McMinn et al., 2010; Palomba et al.,
2016). As a consequence, the test data generated by these
approaches usually provides no measurable improvement in
the number of bugs actually found by manual testing (Fraser
et al., 2015; Shamshiri et al., 2015; Ceccato et al., 2015).
The automated generated test data usually needs a human
oracle due to the frequent non-existence of an automated
oracle. In addition, the automated generated test data are
often arbitrary-looking, and arbitrary-looking test data are
both difficult to comprehend and time-consuming to check.
Two studies (Fraser et al., 2015; Fraser and Arcuri, 2013)
reported that developers spend up to 50% of their time
comprehending and checking arbitrary-looking unreadable
machine-generated test data.

The main reason why automated generated test data is
unreadable is because automated test data generation
approaches do not incorporate knowledge about the input
into the generation process. For example, some programs
use ‘month’, ‘day’, and ‘year’ as input variables, but if the
generation process does not take into account what realistic
date test data looks like, then the test data will be difficult to
understand and check. It is necessary to incorporate domain
knowledge into the process of test data generation, such as
that the domain knowledge of ‘month’ is ‘month’ is
between 1 and 12. However, since formal specifications and
domain knowledge are frequently unavailable to a program
under testing, extracting more information from the code
becomes even more critical.

Constraint-based testing (CBT) (Offutt and DeMilli,
1991; Boonstoppel et al., 2008) is one of the approaches
used to generate test data automatically. The general idea
behind CBT is to extract constraints from a program and
exploit constraint solving to generate test cases for the
program (Gotlieb, 2015). Symbolic execution (Mishra et al.,
2005) is usually used for collecting constraints, as it
interprets a program by using symbolic inputs along a path
to compute a constraint called the path constraint. For the
CBT approach, incorporating knowledge about the input
domain in the generation process would mean adding extra
constraints to the program constraints or designating a start
point to seed the generation of test data. For example, in the
case that a program uses dates as input variables, if the

program constraints do not include any constraints that
restrict the value of ‘month’ to a readable value (we call
variables that lack constraints ‘under-constrained
variables’), the extra constraint of ‘month’ is 1 <= month <=
12.

Under-constrained variables are common in real-world
projects (details in Subsection 3.2.1). Due to the lack of
constraints, under-constrained variables need to be solved in
a large solution space to generate test data and are prone to
generating unreadable test data. Compared with
under-constrained variables, variables with integrated
constraints reduce the solution space, but determining how
to generate readable test data in the solution space is also an
important problem that needs to be solved. As a result, both
obtaining extra constraints and providing a starting point to
seed test data generation are important issues that must be
addressed in generating readable test data based on the CBT
approach.

In this paper, we present an approach to alleviate
unreadable test data problems for numerical data types.
Rather than relying on frequently unavailable program
specifications and expert knowledge to generate readable
test data, we leverage constant information mined from the
source code to generate extra constraints and seed the
generation process. We select four types of specific
operators and use these specific operators to mine constants
that are related to the input variables. The mined constant
information is then processed and used to generate extra
constraints and seed the generation process. We implement
our approach in a tool called code testing system (CTS).
CTS is an automated unit testing tool for C code, and it can
automatically generate test data for functions under testing.

We present an empirical study in which we evaluated
the capabilities of our approach. We evaluated CTS on the
real-world project double. The evaluations show that our
approach can improve the efficiency of test data generation
and generate test data that is more convenient for a human
oracle.

The contributions of this paper are as follows:

1 We divide the input variables into integrated constraint
variables and under-constrained variables, and we point
out that under-constrained variables are a direct cause
of tools generating unreadable test data. To negate the
effect of under-constrained variables, we reduce the
generation of unreadable test data by adding extra
constraints.

2 We propose a method for generating heuristic
information by mining constant information. By
aggregating and rating the constants, we can obtain
heuristic information for generating readable test data.

The rest of this paper is organised as follows: Section 2
introduces the background and basic idea of our approach.
Section 3 describes the details of our approach
implementation. Section 4 presents the experimental results.
Section 5 discusses related work. Section 6 gives a
conclusion.

 Mining constant information for readable test data generation 11

Figure 1 Workflow of our approach

Source Code Static Analysis

 Under‐
constraint
Variables

Heuristic
Information

Correlated
Constants

Program
Constraints

 Clustering &
Rating

 Under‐constraint
Analysis

 Extra Constraints

Integrated
Constraints

Test Data
GeneratorTest Data

Start Point

2 Background and basic idea of our approach

In the CBT approach, test data is a set of data that has
satisfied the constraints of the program. As a result, the test
data can cover the code that corresponds to constraints that
the test data has satisfied. Since an automated oracle is not
always available, the test data may be frequently evaluated
manually; it is not enough for the test data to only satisfy
program constraints. For human oracle processes, it is
important to have a set of readable test data for programs
under testing. Some programs make use of
human-recognisable variables as inputs; additionally, the
data types of input variables are different, and consequently,
the requirements for the readability of test data vary
according to program characteristics and the data types of
the inputs. For example, string inputs usually need data with
a specific structure and realistic semantics, such as the test
data for a country name, email address or URL. For
numerical data types, the readability must qualify in two
respects:

2.1 Value readability

The values of readable numerical data should be easily
comprehensible or easy to check, meaning that the value
ranges of readable numerical data can be handled by
humans. In the CBT approach, test data is constrained by
the program constraints. Satisfying program constraints is
the most basic requirement for test data. On the basis of
satisfying the program constraints, the readable test data
should be reasonable for the program under testing and
should be able to be handled by humans. There are some
under-constrained variables in real-world projects. For these
under-constrained variables, the test data generated based
on the existing constraints only meets the most basic
requirements. It is hard to determine a readable value in an
unconstrained solution space; as a result, adding extra
constraints to the under-constrained variables becomes
necessary.

2.2 Semantic readability

In some real-world projects, numerical data type inputs are
human-recognisable variables, such as ISBNs and zone
improvement plan (ZIP) codes. Test data that meets
structural requirements or have a specific meaning are
semantically readable. Two approaches can be used to
generate semantically readable test data. One approach is to
add extra constraints to the program constraints according to
the specific semantic requirements, but the extra constraints
are difficult to obtain through automated analysis and can be
added by manual analysis. However, manual analysis would
require expert knowledge because domain knowledge is
required to convert information in a program into extra
constraints; therefore, the conversion process requires
significant human effort. The other approach is to acquire
test data directly from an external knowledge base such as
(Bozkurt and Harman, 2011), in which they acquired test
data from compositions of many existing web services. This
approach requires the availability of an external knowledge
base and the need to establish a relationship between
program elements and external knowledge bases. Finding an
available external knowledge base and establishing a
relationship require much human effort. Furthermore, there
are few available external knowledge bases, which makes
for poor scalability.

In this paper, we focus only on generating value-
readable test data for numerical data types in real-world
projects. The key ideas of our approach are to use the
constant information in the projects under testing to
generate extra constraints and obtain a start point; use extra
constraints to constrain the under-constrained variables to
generate value-readable test data; and use the start point to
seed the test data generation. This approach consists of three
phases. First, program constraints and related constants
(constants that act directly on input variables through
specific operators; details can be found in Subsection 3.1)
are extracted. Then, we analyse the extracted data to obtain
under-constrained variables and heuristic information, use

12 M. Zhang et al.

the heuristic information to generate extra constraints and
obtain a start point, and finally generate readable test data
by querying the start point and solving the integrated
constraints. Figure 1 shows the workflow of our approach.

3 Approach

In this section, we describe the details of the readable test
data generation for numerical data types by CTS.

3.1 Extracting program constraints and related
constants

CTS extracts information (program constraints and related
constants) from the source code via static analysis. In the
following, we first introduce the concepts of program
constraints and related constants and then present the details
of static analysis.

 Program constraints: Program constraints are a set of
conditions in one path that input variables must satisfy;
they can be obtained by symbolic execution techniques.
Taking the branch statement if (a > 10) as an example,
supposing that a_sym is the symbol of a, after the
branch statement is executed by the symbol, we can
obtain the following constraint on variable a:
a_sym > 10.

 Related constants: Related constants are constants that
act directly on input variables through specific
operators (including ==, >=, <=, >, <, etc. the specific
operators are listed in Subsection 3.2.2). For example,
in the expression a > 10, supposing that a is an input
variable, then 10 is a related constant of a.

Before compilation, the source code is just character
streams, and it is difficult to extract information from
character streams. To perform static analysis of the source
code, we convert the source code into structural data such as
an abstract syntax tree (AST) and control flow graph (CFG).

After CTS obtains the AST and CFG of the program
under testing, CTS uses symbolic execution techniques to
execute the program and obtain program constraints.
Symbolic execution is performed by traversing the CFG
along the given path and simulating the effect of executing
the code contained in a node of the AST that corresponds to
the node in the CFG. The constraints can be found from the
symbolic execution results of the branch statements; the
program constraints are the conjunction of all constraints in
the path.

The AST is a tree representation of the abstract syntactic
structure of the source code. Each node of the tree denotes a
construct occurring in the source code. We can obtain the
relationship among variables, operators, and constants from
the AST; related constants are then extracted by analysing
the relationship.

To obtain a related constant, we first need to determine
the CFG nodes in need of further analysis. Since each type
of statement has a corresponding type of CFG node, we

select three types of statements that may contain related
constants: branch statements, declaration statements and
assignment statements; thus, the corresponding CFG nodes
are the target nodes we need to analyse. When these CFG
nodes contain constants that satisfy the definition of related
constants, the resulting constants must be the related
constants. Second, for a given path, we find all the target
CFG nodes and then traverse the corresponding AST nodes
of the target CFG node to find the related constants. Finally,
we store the related constants and the corresponding
operators and input variables.

Code 1

1 int f (int a[], int x){

2 x = strlen(a);

3 if (x >= 3){

4 a[x] = 1;

5 }

6 …

7 }

Taking Code 1 as an example, the CFG and AST of Code 1
are shown in Figure 2 for a given path: 0-1-2-3-5-6 (the
numbers represent the CFG edges in Figure 2). We first
determine the CFG nodes that need to be analysed: stmt_1,
if_head_2, and stmt_3. Then, we traverse the corresponding
AST nodes and find that the AST nodes corresponding to
if_head_2 contain the special operation >=. The operands of
the special operation >= are input variable x and constant 3.
3 is the related constant of x.

3.2 Analysing the data that has been extracted

3.2.1 Under-constrained analysis

The CBT approach generates test data by solving
constraints of input variables. When the constraints of input
variables are incomplete, the constraint solver needs to
generate test data in a large solution space, which may
produce test data that is difficult for humans to process (for
example, the values of the test data are too large), resulting
in poorly readable test data.

 Under-constrained variables: An under-constrained
variable is a variable whose constraint either has no
upper or lower bound or no bound at all. For example,
supposing that x is an input variable of the function
under testing, for a given path, the constraint of x is
x > 10; in this example, x does not have an upper bound
of the constraint. If x is an int type (referring to the C
language program), x will take a value between 11 and
32,767 under the current constraint. If the value of x is
too large, it will be difficult for a human oracle to
process.

 Integrated constraint variables: An integrated
constraint variable is a variable whose constraint has
both an upper and lower bound.

 Mining constant information for readable test data generation 13

Figure 2 AST and CFG of Code 1

func_head_f_0 if_head_2 stmt_3
true_2

false_4

if_out_4 0 1 ... func_out_f_5
5 6

stmt_1
3

AST
node

CFG
node

CFG
edge

AST edge

a[] x =

x strlen(a)

 strlen a

>=

x 3

=

a[x] 1

xa

...

To understand the distribution of under-constrained
variables in real-world projects, we have calculated the
distribution of under-constrained variables in the real-world
project double. Double is a double-precision mathematical
function library, available from Astronomy and Numerical
Software Source Codes (http://www.moshier.net/). We
verify that a variable is under-constrained by analysing the
obtained program constraints. The results are shown in
Table 1.

Table 1 The distribution of under-constrained variables in
double

Project Double

Number of functions 277

Number of paths 978

Number of paths with under-constrained variables 734

Number of paths without under-constrained variables 104

Number of infeasible paths 140

The CBT approach is path-oriented. For different paths in a
function, the constraints of the input variables may be
under-constrained or integrated, and as a result, we cannot
determine whether an input variable is under-constrained or
integrated in a function and can only more narrowly
determine whether the input variable is under-constrained or
integrated for a given path. In our analysis of double, we
counted the number of paths with under-constrained
variables (a path here refers to a path in the function, and
the number of paths in Table 1 refers to the sum of the paths
of a function in double). According to the results in Table 1,
up to 75% of the paths in double contain under-constrained
variables. If we do not add extra constraints to these
variables, the program will generate a large number of test
data that a human oracle may have difficulty processing.

3.2.2 Aggregating and rating related constants to
generate heuristic information

After we obtain the related constants in the program, we
must analyse them. Related constants act on input variables
through various operators that have different effects on the
input variables. According to the semantics and usage
scenarios of these operators, the relationship between input

variable values and constants can be determined by
backward reasoning, and related constants are used to
inspire and constrain the generation of test data. In this
section, we first list all the specific operators involved in the
extraction of the related constants and explain why these
specific operators were selected. Then, we show how to
generate the heuristic information by aggregating and rating
related constants according to the semantics and usage
scenarios of specific operators.

3.2.2.1 Specific operators in related constant
extraction

Equal to (==)

When the input variable and constant are related by ==, this
indicates that the constant is one of the target values of the
input variable. Furthermore, since the constant is set by the
developer according to a certain specification, the constant
is reasonable for both the input variable and the program
under testing. The constant can be used directly to seed test
data generation for the input variable and its related
variables.

Greater than or equal to (>=) and less than or equal
to (<=)

These two operators not only compare input variables and
constants but also provide boundary values for input
variables. Because the input variable can be equal to the
related constant under the current operation, the related
constant can be used as the boundary value of the input
variable. In addition, since the constant is set by the
developer according to a certain specification, it can also be
used to seed test data generation.

Function call (())

When the argument of the called function contains a
constant, the constant is the related constant of the
corresponding parameter. For example, supposing that
function f(int x, int y) is called as f(a, 5), a is a variable in
the calling function, and 5 is the related constant of y. Since
the related constant obtained by the function call is set by
the developer, the value of the related constant should be

14 M. Zhang et al.

reasonable to them; thus, we can also use this value to seed
test data generation.

Greater than (>) and less than (<)

When a constant acts on an input variable through these
operators, they indicate that the constant is comparable to
the input variable. If the expected value of the input variable
is much larger than the compared constant, then the
comparison will become meaningless. Based on this
reasoning, the value of the input variable under the current
operation can be generated around the value of the related
constant. Because the related constant is set by the
developer according to a specification, the related constant
is used to heuristically generate data that meet the
requirements of the program and developers.

Table 2 Related constant rates in real-world projects

Project LOC
Input

variables

Input
variables

with
related

constants
(rate)

Functions

Functions
with

related
constants

(rate)

128 bit 19,655 295 60 (20%) 204 51 (25%)

Single 17,682 335 59 (18%) 170 48 (28%)

Double 37,452 608 221
(36%)

246 144
(58%)

We collect and extract related constants based on the above
operators and use the extracted related constants to generate
readable test data. We applied the above operators to the
extraction process of related constants and conducted an
empirical analysis of real-world projects to see how many
related constants could be obtained. Table 2 shows the
results of our analysis. All the projects we used can be
found at Astronomy and Numerical Software Source Codes;
most of the inputs of these projects are numerical data types.
As shown in Table 2, the rates of related constants vary in
different projects.

3.2.2.2 Aggregating and rating related constants

When we obtain all the related constants in a project, we
must analyse the related constants to generate the heuristic
information. Not every variable has related constants – for
instance, under-constrained variables may not have related
constants. To generate heuristic information for all the
under-constrained variables, we aggregate the related
constants and generate heuristic information to produce
extra constraints by analysing the aggregation results. We
then rate the related constants by rating the specific
operators and select the related constants with strong
heuristics to seed the test data generation.

Aggregating related constants

Under-constrained variables may not have related constants,
so we must generate heuristic information based on existing

related constants. The number of related constants obtained
by a single type of specific operator may be too small,
thereby making it difficult to obtain valid information from
these related constants. As a result, we aggregate all related
constants to extract heuristic information.

To obtain all the related constants in the project under
testing, we aggregate the related constants obtained by each
type of operator. Before analysing the aggregated data, we
first clean the data for the purpose of removing outliers.
Tukey’s test (Vardy and Moller, 2005) is used for data
cleaning.

First, we have to calculate the first quartile (Q1) and the
third quartile (Q3). Q1 is defined as the middle number
between the smallest number and the median of the related
constant data set; Q3 is the middle value between the
median and the highest value of the related constant data
set.

When the data set of related constants is arranged in
ascending order, Q1 is given by equation (1), where rc
denotes a related constant (same below).

th
1

1
4

n
Q rc

 (1)

Q3 is given by equation (2).

th
3(1)

3
4

n
Q rc

 (2)

After obtaining Q1 and Q3, we can use equation (3) and
equation (4) to calculate the upper limit (ul) and lower limit
(ll) of the normal related constants.

3 1.5 (3 1)ul Q Q Q (3)

1 1.5 (3 1)ll Q Q Q (4)

Any related constant not included between ul and ll is an
outlier; we remove all outliers from the related constant data
set to complete the data cleaning. We cleaned the data of the
three projects presented in Table 2 and found that the
outliers are related constants that appear either once or
twice. Based on this result, we will try to remove related
constants with lower frequency to simplify the data cleaning
process in future experiments.

When the data cleaning is complete, we can obtain the
upper and lower limits (ul and ll) of the related constants.
Excluding outliers, the related constants are distributed
between ul and ll. Since all the related constants are set by
the developer according to specifications, the aggregated
data can, to a certain extent, reflect the expected values of
the project under testing. Because an under-constrained
variable has no upper or lower bound, we need to choose
values between ul and ll as the constraint boundaries. The
values should be points at which the balance is in
equilibrium between ul and ll. However, the frequency of
each related constant varies in the related constant data set,
so we use the weighted arithmetic mean as the value. The
weighted arithmetic mean can be calculated using

 Mining constant information for readable test data generation 15

equation (5), where f denotes the frequency of the related
constant.

1

1

n

i i

i
n

i

i

f rc

c

f

 (5)

We use c as a constraint boundary to add an extra
constraint for under-constrained variables. Since we do not
know the relationship among existing constraint boundaries,

,c ul and ll, we need to determine the relationship by
comparison and generate the corresponding extra
constraints. Supposing that x is an under-constrained
variable, Table 3 shows how to add an extra constraint to
the under-constrained variable x, and the current constraint
is the constraint of x for a given path. If the current
constraint does not intersect with the interval formed by ll
and ul, we increase or decrease the step value d to the
existing constraint boundary to form an integrated
constraint. The step value d can be given by the user or set
to a fixed value. For other under-constrained variables in the
project under testing, we can add extra constraints according
to the rules in Table 3 to generate integrated constraints.
When we finish generating the integrated constraints for the
under-constrained variables, we use a constraint solver
(Xing et al., 2014) to solve the constraints and generate
readable test data.

Table 3 Adding extra constraints to the under-constrained
variables

Type
Current

constraint

Relationship
among c1,

c2, ,c ll and
ul

Extra
constraint

Integrated
constraint

x > c1 c1 < c x < c c1 < x
< c

x > c1 c < c1 < ul x < ul c1 < x
< ul

Missing
upper
bound of
the
constraint

x > c1 c1 > ul x < c + d c1 < x
< c1 + d

x < c2 c2 > c x > c c < x
< c2

x < c2 ll < c2 < c x > ll ll < x
< c2

Missing
lower
bound of
the
constraint

x < c2 c2 < ll x > c2
– d

c2 – d
< x < c2

Missing
constraint

x N/A ll < x <
ul

ll < x < ul

Rating related constants

We have provided four types of specific operators in the
above section. Due to the differences in the semantics of
each type of operator, the heuristic ability of the

corresponding related constants also varies. For example,
the related constants obtained by function call are values set
by the developer, and these values are reasonable for the
developer. The related constants obtained by greater than
(>) or less than (<) indicate that the related constants and the
corresponding input variables are comparable; we speculate
that the input variable values may be close to the related
constants, but this is only a conjecture and may not be
accurate.

According to the semantics of each type of specific
operator and the heuristic ability of the corresponding
related constants, we divide the specific operators into two
groups: strong heuristics and weak heuristics. Strong
heuristic operators include equal to (==), greater than or
equal to (>=), less than or equal to (<=), and function call
(()). Weak heuristic operators include greater than (>) and
less than (<). The corresponding related constants are strong
heuristic-related constants and weak heuristic-related
constants.

We collect all the strong heuristic-related constants as
the start point to seed the generation and index the related
constants for test data generation. For an integrated
constraint variable, we first query whether the variable has
strong heuristic-related constants and determine if it
satisfies the constraints. If the constants satisfy the
constraints, we will use the constants as the test data. If the
constants do not satisfy the constraints, we will use the
constants to increase or decrease the fixed value to try to
satisfy the constraints and use the value that satisfies the
constraints as the test data.

4 Evaluation

The approach is integrated into CTS, which is an automated
unit testing tool for C code. To evaluate our approach, CTS
is divided into two versions: CTS with related constant
analysis and CTS without related constant analysis
(CTS-Basic). The objective of the experiments was to
investigate the following research questions.

RQ1 Does our approach help CTS improve the efficiency
of test data generation?

To answer RQ1, we evaluated the test data generation times
of CTS and CTS-Basic.

RQ2 Does our approach help CTS generate test data that
is more convenient for a human oracle?

To answer RQ2, we compared the readability of the test
data generated by CTS and CTS-Basic.

The experiments are conducted on the real-world project
double. We use a simple random sampling method to select
25 of the functions in double that contain under-constrained
variables. For these functions, we run CTS and CTS-Basic
to generate test data and record the time and test data. The
experiments in the evaluation were run on a laptop with a
2.20 GHz CPU and 8 GB RAM running an Ubuntu-14.04
operating system.

16 M. Zhang et al.

Figure 3 Test data generation times of CTS and CTS-Basic (see online version for colours)

Figure 4 Means of test data (floating-point data types) of CTS and CTS-Basic (see online version for colours)

4.1 RQ1

The results of the test data generation times of CTS and
CTS-Basic are shown in Figure 3. Figure 3 shows that for
most of the functions under testing, the test data generation
time of CTS is shorter than that of CTS-Basic. This is
because CTS-Basic does not add extra constraints to
under-constrained variables, and the constraint solver needs
to generate test data in a large solution space, which leads to
a longer generation time for CTS-Basic. To generate
integrated constraints for under-constrained variables, CTS
obtains heuristic information by mining and analysing
related constants and uses the heuristic information to
generate extra constraints or seed test data generation. The
integrated constraints generated based on heuristic
information not only reduce the solution space but also
constrain the test data within a reasonable interval. As a
result, we can obtain test data in a shorter time by using
CTS.

4.2 RQ2

Since the main purpose of our approach is to generate
readable test data, we need to evaluate the generated test
data. For test data of numerical data types, there is no
uniform standard to determine what kind of test data is
readable. However, because we generate readable test data
for the convenience of a human oracle, for humans, the
smaller the size of the data, the more convenient it is to
calculate (in the case where the absolute values of the
compared data is greater than 1 and the numbers of digits

are similar, not 1.1 and 1.00000001, or 0.01 and
0.0000001). In this experiment, we determine whether the
test data is convenient for a human oracle by comparing the
size of the generated test data.

1

n

i

i

t

t
n

 (6)

To compare the size of the generated test data, we use
equation (6) to calculate the mean of the test data for the
function under testing, where t denotes test data. In this
experiment, we focus only on floating-point test data.

As shown in Figure 4, the test data generated by CTS is
significantly smaller than those generated by CTS-Basic.
These results indicate that adding extra constraints based on
heuristic information can effectively limit the size of the test
data. Compared with the test data generated by CTS-Basic,
the test data generated by CTS is smaller and more
convenient to calculate. Therefore, for developers, the test
data generated by CTS is more readable than those
generated by CTS-Basic. The mean value generated by CTS
is greater than that generated by CTS-Basic for the three
functions acos, bdtrc, and gdtr. There are two reasons for
this. First, the constraint of an under-constrained variable
may not intersect with the interval formed by ll and ul; this
causes the variable to generate test data in a larger interval.
Second, our constraint solver randomly takes values within
the interval corresponding to the integrated constraint.
Although CTS-Basic lacks constraints, it is possible for
CTS-Basic to generate smaller test data than CTS.

 Mining constant information for readable test data generation 17

4.3 Threats to validity

Threats to internal validity are concerned with possible bugs
in the implementation of our approach. To reduce these
threats, we performed a manual check to review all the code
we produced for correctness.

Threats to external validity regard the potential bias in
the selection of projects used in the evaluation. These
threats are related to the following question: were the
programs we selected representative? To reduce these
threats, we tried to remove any bias related to the selection
of samples by adopting a third-party benchmark. However,
there is a chance that the samples are still not representative.

Threats to construct validity are concerned with whether
our measurements reflect real-world situations. In our study,
we used criteria to measure the performance of our
approach, including the size of the generated test data and
the test data generation time. However, these two criteria do
not take the human costs (such as determining how to
aggregate and rate related constants) into account.

5 Related work

The test data generated by an automated test data generation
approach is usually unrealistic and unreadable (Fraser et al.,
2015; Fraser and Arcuri, 2013), and approaches have been
presented to deal with this problem.

Some approaches that incorporate knowledge about the
input of the program into the automated test data generation
process are used to generate readable test data, and the
knowledge can be extracted from experts, source code, the
web and so on. Shahbaz et al. (2012) presented an approach
for generating values for string data types by finding valid
string inputs on the web. However, the identifiers used to
generate web queries must be meaningful. The identifiers in
an object-oriented program are usually meaningful, but in a
C program, a meaningful identifier is hard to find. A similar
approach was presented by McMinn et al. (2012) to extract
knowledge from the internet and use the knowledge as
string inputs. The method of splitting identifiers into
constituent words used in this paper is based on
underscoring and camel casing. Bozkurt and Harman (2011)
acquired test data from the compositions of many existing
web services. Their work can only deal with programs that
require structural and semantic data as input, for example,
using ISBNs or ZIP codes as program inputs.

Afshan et al. (2013) presented an approach in which a
natural language (NL) model is incorporated into a
search-based input data generation process, and the NL
model is used to assign a probability score to string test
data, with the score ranking the readability of the generated
string test data. However, the NL model requires various
types of text to train the model to deal with any string.

McMinn et al. (2010) extracted constraints from the
program under testing; these constraints were extracted
based on sanitisation routines or defensive programming
constructs and used to ‘correct’ automatically generated
inputs. However, not every program has such constraints.

Because the test data values produced by automated test
data generators are arbitrary-looking, these values are
difficult to understand and maintain. Some works have
sought to improve the comprehensibility of test data or
reduce the workload of testers. Panichella et al. (2016)
proposed an approach that automatically generates test case
summaries of programs to improve understandability. They
extracted information from code and code comments,
including verbs, nouns, and prepositional phrases that can
be expanded to generate readable NL sentences. However,
this work requires the quality of the code to be good
enough; if not, there will not be enough information to
generate the summaries. Li et al. (2016) presented an
approach to automatically generate NL documentation of
unit test cases to ameliorate the burden of maintaining unit
test cases for developers. Since reducing the workload of
testers can give testers more time to comprehend unreadable
test cases, improving the understandability is also widely
related to the test size (Athanasiou et al., 2014). Fraser and
Arcuri (2013) proposed an approach to reduce the number
of generated tests by applying post-process minimisation.

6 Conclusions

In this paper, we have presented an approach to generate
readable test data and implemented our approach in a tool
called CTS. CTS can mine related constants from projects
by analysing specific operators. Then, CTS can obtain
heuristic information by aggregating and rating the mined
related constants and use the heuristic information to
generate integrated constraints for under-constrained
variables or seed the test data generation process. Since
most related constants are set by the developer according to
certain specifications and are reasonable for the program
under testing, the heuristic information is also reasonable.
As a result, by using the heuristic information, CTS reduces
the solution space of under-constrained variables and
improves the efficiency of test data generation.
Furthermore, due to the addition of heuristic information,
the test data generated by CTS is smaller and more
convenient for a human oracle.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China under Grant Nos. U1736110 and
61702044.

18 M. Zhang et al.

References

Afshan, S., McMinn, P. and Stevenson, M. (2013) ‘Evolving
readable string test inputs using a natural language model to
reduce human oracle cost’, in Proceedings of the 2013 IEEE
Sixth International Conference on Software Testing,
Verification and Validation, Luxembourg, 18–22 March,
pp.352–361.

Astronomy and Numerical Software Source Codes [online]
http://www.moshier.net/ (accessed 16 January 2020).

Athanasiou, D., Nugroho, A., Visser, J. and Zaidman, A. (2014)
‘Test code quality and its relation to issue handling
performance’, IEEE Transactions on Software Engineering,
Vol. 40, No. 11, pp.1100–1125.

Beller, M., Gousios, G., Panichella, A. and Zaidman, A. (2015)
‘When, how, and why developers (do not) test in their IDEs’,
in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, Bergamo, Italy,
30 August–4 September, pp.179–190.

Boonstoppel, P., Cadar, C. and Engler, D. (2008) ‘RWset:
attacking path explosion in constraint-based test generation’,
in Proceedings of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
Budapest, Hungary, 29 March–6 April, pp.351–366.

Bozkurt, M. and Harman, M. (2011) ‘Automatically generating
realistic test input from web services’, in Proceedings of the
2011 IEEE 6th International Symposium on Service Oriented
System, Irvine, CA, USA, 12–14 December, pp.13–24.

Ceccato, M., Marchetto, A., Mariani, L., Nguyen, C.D. and
Tonella, P. (2015) ‘Do automatically generated test cases
make debugging easier? An experimental assessment of
debugging effectiveness and efficiency’, ACM Transactions
Software Engineering Methodology, Vol. 25 No. 1, pp.1–38.

Daka, E. and Fraser, G. (2014) ‘A survey on unit testing practices
and problems’, in Proceedings of the 2014 IEEE 25th
International Symposium on Software Reliability
Engineering, Naples Italy, 3–6 November, pp.201–211.

Fraser, G. and Arcuri, A. (2013) ‘Whole test suite generation’,
IEEE Transactions on Software Engineering, Vol. 39, No. 2,
pp.276–291.

Fraser, G., Staats, M., McMinn, P., Arcuri, A. and Padberg, F.
(2015) ‘Does automated unit test generation really help
software testers? A controlled empirical study’, ACM
Transactions Software Engineering Methodology, Vol. 24,
No. 4, pp.1–49.

Gotlieb, A. (2015) ‘Constraint-based testing: an emerging trend in
software testing’, Advances in Computers, Vol. 99,
pp.67–101.

Li, B., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D. and
Kraft, N.A. (2016) ‘Automatically documenting unit test
cases’, in Proceedings of the 2016 IEEE International
Conference on Software Testing, Verification and Validation,
Chicago, IL, USA, 11–15 April, pp.341–352.

McMinn, P., Shahbaz, M. and Stevenson, M. (2012)
‘Search-based test input generation for string data types using
the results of web queries’, in Proceedings of the 2012 IEEE
Fifth International Conference on Software Testing,
Verification and Validation, Montreal, QC, Canada, 17–21
April, pp.141–150.

McMinn, P., Stevenson, M. and Harman, M. (2010) ‘Reducing
qualitative human oracle costs associated with automatically
generated test data’, in Proceedings of the First International
Workshop on Software Test Output Validation, Trento, Italy,
pp.1–4.Mishra, P., Dutt, N., Krishnamurthy, N. and Abadir,
M. (2005) ‘A methodology for validation of microprocessors
using symbolic simulation’, International Journal of
Embedded Systems, Vol. 1, Nos. 1–2, pp.14–22.

Neves, V.D.O., Delamaro, M.E. and Masiero, P.C. (2016)
‘Combination and mutation strategies to support test data
generation in the context of autonomous vehicles’,
International Journal of Embedded Systems, Vol. 8, Nos. 5/6,
pp.464–482.

Offutt, A. and DeMilli, R. (1991) ‘Constraint-based automatic test
data generation’, IEEE Transactions on Software
Engineering, Vol. 17, No. 9, pp.900–910.

Palomba, F., Panichella, A., Zaidman, A., Oliveto, R. and
De Lucia, A. (2016) ‘Automatic test case generation: what if
test code quality matters?’, in Proceedings of the 25th
International Symposium on Software Testing and Analysis,
Saarbrücken, Germany, 18–20 July, pp.130–141.

Pan, L., Wang, T., Qin, J. and Xiang, X. (2018) ‘A dynamic test
prioritisation based on DU-chain coverage for regression
testing’, International Journal of Embedded Systems, Vol. 10,
No. 2, pp.113–119.

Panda, S. and Mohapatra, D.P. (2017) ‘Hierarchical regression test
case selection using slicing’, International Journal of
Computational Science and Engineering, Vol. 14 No. 2,
pp.179–197.

Panichella, S., Panichella, A., Beller, M., Zaidman, A. and
Gall, H.C. (2016) ‘The impact of test case summaries on bug
fixing performance: an empirical investigation’, in
Proceedings of the 2016 IEEE/ACM 38th International
Conference on Software Engineering, Austin, TX, USA,
14–22 May, pp.547–558.

Shahbaz, M., McMinn, P. and Stevenson, M. (2012) ‘Automated
discovery of valid test strings from the web using dynamic
regular expressions collation and natural language
processing’, in Proceedings of the 2012 12th International
Conference on Quality Software, Xi’an, Shaanxi, China,
27–29 August, pp.79–88.

Shamshiri, S., Just, R., Rojas, J.M., Fraser, G., McMinn, P. and
Arcuri, A. (2015) ‘Do automatically generated unit tests find
real faults? An empirical study of effectiveness and
challenges (T)’, in Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software
Engineering, Lincoln, NE, USA, 9–13 November,
pp.201–211.

Vardy, A. and Moller, R. (2005) ‘Biologically plausible visual
homing methods based on optical flow techniques’,
Connection Science, Vol. 17, Nos. 1–2, pp.47–89.

Xing, Y., Gong, Y., Wang, Y. and Zhang, X. (2014) ‘Branch and
bound framework for automatic test case generation’,
SCIENTIA SINICA Informationis, Vol. 44 No. 10,
pp.1345–1360.

