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Abstract: Automated test data generation tools produce test data that can achieve high coverage 
faster than test data generated manually by a tester. However, the test data generated by 
automated tools has been shown to not help developers find more bugs. The main reason is that it 
is difficult for human testers to understand and evaluate the test data. In this paper, an approach is 
introduced to automatically generate readable test data, which has been implemented in a tool 
called CTS. CTS can mine constant information from projects under testing and obtain heuristic 
information by aggregating and rating related constants. CTS adds heuristic information to the 
automatic test data generation process to generate test data that is quick and easy for a human to 
comprehend and check. Empirical experiments show that the proposed approach can improve the 
efficiency of test data generation and generate test data that is more convenient for a human 
oracle. 
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1 Introduction 

Software testing is an important activity in software 
development and is widely used to assure software quality 
(Panda and Mohapatra, 2017; Pan et al., 2018; Neves et al., 
2016). However, it is also laborious and time-consuming, 
and programmers may spend a quarter of their work time 
solely on developing testing (Beller et al., 2015; Daka and 
Fraser, 2014). Since test data generation is the most 
challenging and time-consuming process in software testing, 
several automated test data generation tools have been 
proposed to reduce the time developers need to spend on 
testing. 

Automated test data generation approaches mainly focus 
on code coverage as a unique goal without accounting for 
other relevant factors (McMinn et al., 2010; Palomba et al., 
2016). As a consequence, the test data generated by these 
approaches usually provides no measurable improvement in 
the number of bugs actually found by manual testing (Fraser 
et al., 2015; Shamshiri et al., 2015; Ceccato et al., 2015). 
The automated generated test data usually needs a human 
oracle due to the frequent non-existence of an automated 
oracle. In addition, the automated generated test data are 
often arbitrary-looking, and arbitrary-looking test data are 
both difficult to comprehend and time-consuming to check. 
Two studies (Fraser et al., 2015; Fraser and Arcuri, 2013) 
reported that developers spend up to 50% of their time 
comprehending and checking arbitrary-looking unreadable 
machine-generated test data. 

The main reason why automated generated test data is 
unreadable is because automated test data generation 
approaches do not incorporate knowledge about the input 
into the generation process. For example, some programs 
use ‘month’, ‘day’, and ‘year’ as input variables, but if the 
generation process does not take into account what realistic 
date test data looks like, then the test data will be difficult to 
understand and check. It is necessary to incorporate domain 
knowledge into the process of test data generation, such as 
that the domain knowledge of ‘month’ is ‘month’ is 
between 1 and 12. However, since formal specifications and 
domain knowledge are frequently unavailable to a program 
under testing, extracting more information from the code 
becomes even more critical. 

Constraint-based testing (CBT) (Offutt and DeMilli, 
1991; Boonstoppel et al., 2008) is one of the approaches 
used to generate test data automatically. The general idea 
behind CBT is to extract constraints from a program and 
exploit constraint solving to generate test cases for the 
program (Gotlieb, 2015). Symbolic execution (Mishra et al., 
2005) is usually used for collecting constraints, as it 
interprets a program by using symbolic inputs along a path 
to compute a constraint called the path constraint. For the 
CBT approach, incorporating knowledge about the input 
domain in the generation process would mean adding extra 
constraints to the program constraints or designating a start 
point to seed the generation of test data. For example, in the 
case that a program uses dates as input variables, if the  
 
 

program constraints do not include any constraints that 
restrict the value of ‘month’ to a readable value (we call 
variables that lack constraints ‘under-constrained 
variables’), the extra constraint of ‘month’ is 1 <= month <= 
12. 

Under-constrained variables are common in real-world 
projects (details in Subsection 3.2.1). Due to the lack of 
constraints, under-constrained variables need to be solved in 
a large solution space to generate test data and are prone to 
generating unreadable test data. Compared with  
under-constrained variables, variables with integrated 
constraints reduce the solution space, but determining how 
to generate readable test data in the solution space is also an 
important problem that needs to be solved. As a result, both 
obtaining extra constraints and providing a starting point to 
seed test data generation are important issues that must be 
addressed in generating readable test data based on the CBT 
approach. 

In this paper, we present an approach to alleviate 
unreadable test data problems for numerical data types. 
Rather than relying on frequently unavailable program 
specifications and expert knowledge to generate readable 
test data, we leverage constant information mined from the 
source code to generate extra constraints and seed the 
generation process. We select four types of specific 
operators and use these specific operators to mine constants 
that are related to the input variables. The mined constant 
information is then processed and used to generate extra 
constraints and seed the generation process. We implement 
our approach in a tool called code testing system (CTS). 
CTS is an automated unit testing tool for C code, and it can 
automatically generate test data for functions under testing. 

We present an empirical study in which we evaluated 
the capabilities of our approach. We evaluated CTS on the 
real-world project double. The evaluations show that our 
approach can improve the efficiency of test data generation 
and generate test data that is more convenient for a human 
oracle. 

The contributions of this paper are as follows: 

1 We divide the input variables into integrated constraint 
variables and under-constrained variables, and we point 
out that under-constrained variables are a direct cause 
of tools generating unreadable test data. To negate the 
effect of under-constrained variables, we reduce the 
generation of unreadable test data by adding extra 
constraints. 

2 We propose a method for generating heuristic 
information by mining constant information. By 
aggregating and rating the constants, we can obtain 
heuristic information for generating readable test data. 

The rest of this paper is organised as follows: Section 2 
introduces the background and basic idea of our approach. 
Section 3 describes the details of our approach 
implementation. Section 4 presents the experimental results. 
Section 5 discusses related work. Section 6 gives a 
conclusion. 
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Figure 1 Workflow of our approach 
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2 Background and basic idea of our approach 

In the CBT approach, test data is a set of data that has 
satisfied the constraints of the program. As a result, the test 
data can cover the code that corresponds to constraints that 
the test data has satisfied. Since an automated oracle is not 
always available, the test data may be frequently evaluated 
manually; it is not enough for the test data to only satisfy 
program constraints. For human oracle processes, it is 
important to have a set of readable test data for programs 
under testing. Some programs make use of  
human-recognisable variables as inputs; additionally, the 
data types of input variables are different, and consequently, 
the requirements for the readability of test data vary 
according to program characteristics and the data types of 
the inputs. For example, string inputs usually need data with 
a specific structure and realistic semantics, such as the test 
data for a country name, email address or URL. For 
numerical data types, the readability must qualify in two 
respects: 

2.1 Value readability 

The values of readable numerical data should be easily 
comprehensible or easy to check, meaning that the value 
ranges of readable numerical data can be handled by 
humans. In the CBT approach, test data is constrained by 
the program constraints. Satisfying program constraints is 
the most basic requirement for test data. On the basis of 
satisfying the program constraints, the readable test data 
should be reasonable for the program under testing and 
should be able to be handled by humans. There are some 
under-constrained variables in real-world projects. For these 
under-constrained variables, the test data generated based 
on the existing constraints only meets the most basic 
requirements. It is hard to determine a readable value in an 
unconstrained solution space; as a result, adding extra 
constraints to the under-constrained variables becomes 
necessary. 

2.2 Semantic readability 

In some real-world projects, numerical data type inputs are 
human-recognisable variables, such as ISBNs and zone 
improvement plan (ZIP) codes. Test data that meets 
structural requirements or have a specific meaning are 
semantically readable. Two approaches can be used to 
generate semantically readable test data. One approach is to 
add extra constraints to the program constraints according to 
the specific semantic requirements, but the extra constraints 
are difficult to obtain through automated analysis and can be 
added by manual analysis. However, manual analysis would 
require expert knowledge because domain knowledge is 
required to convert information in a program into extra 
constraints; therefore, the conversion process requires 
significant human effort. The other approach is to acquire 
test data directly from an external knowledge base such as 
(Bozkurt and Harman, 2011), in which they acquired test 
data from compositions of many existing web services. This 
approach requires the availability of an external knowledge 
base and the need to establish a relationship between 
program elements and external knowledge bases. Finding an 
available external knowledge base and establishing a 
relationship require much human effort. Furthermore, there 
are few available external knowledge bases, which makes 
for poor scalability. 

In this paper, we focus only on generating value-
readable test data for numerical data types in real-world 
projects. The key ideas of our approach are to use the 
constant information in the projects under testing to 
generate extra constraints and obtain a start point; use extra 
constraints to constrain the under-constrained variables to 
generate value-readable test data; and use the start point to 
seed the test data generation. This approach consists of three 
phases. First, program constraints and related constants 
(constants that act directly on input variables through 
specific operators; details can be found in Subsection 3.1) 
are extracted. Then, we analyse the extracted data to obtain 
under-constrained variables and heuristic information, use 
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the heuristic information to generate extra constraints and 
obtain a start point, and finally generate readable test data 
by querying the start point and solving the integrated 
constraints. Figure 1 shows the workflow of our approach. 

3 Approach 

In this section, we describe the details of the readable test 
data generation for numerical data types by CTS. 

3.1 Extracting program constraints and related 
constants 

CTS extracts information (program constraints and related 
constants) from the source code via static analysis. In the 
following, we first introduce the concepts of program 
constraints and related constants and then present the details 
of static analysis. 

 Program constraints: Program constraints are a set of 
conditions in one path that input variables must satisfy; 
they can be obtained by symbolic execution techniques. 
Taking the branch statement if (a > 10) as an example, 
supposing that a_sym is the symbol of a, after the 
branch statement is executed by the symbol, we can 
obtain the following constraint on variable a:  
a_sym > 10. 

 Related constants: Related constants are constants that 
act directly on input variables through specific 
operators (including ==, >=, <=, >, <, etc. the specific 
operators are listed in Subsection 3.2.2). For example, 
in the expression a > 10, supposing that a is an input 
variable, then 10 is a related constant of a. 

Before compilation, the source code is just character 
streams, and it is difficult to extract information from 
character streams. To perform static analysis of the source 
code, we convert the source code into structural data such as 
an abstract syntax tree (AST) and control flow graph (CFG). 

After CTS obtains the AST and CFG of the program 
under testing, CTS uses symbolic execution techniques to 
execute the program and obtain program constraints. 
Symbolic execution is performed by traversing the CFG 
along the given path and simulating the effect of executing 
the code contained in a node of the AST that corresponds to 
the node in the CFG. The constraints can be found from the 
symbolic execution results of the branch statements; the 
program constraints are the conjunction of all constraints in 
the path. 

The AST is a tree representation of the abstract syntactic 
structure of the source code. Each node of the tree denotes a 
construct occurring in the source code. We can obtain the 
relationship among variables, operators, and constants from 
the AST; related constants are then extracted by analysing 
the relationship. 

To obtain a related constant, we first need to determine 
the CFG nodes in need of further analysis. Since each type 
of statement has a corresponding type of CFG node, we 

select three types of statements that may contain related 
constants: branch statements, declaration statements and 
assignment statements; thus, the corresponding CFG nodes 
are the target nodes we need to analyse. When these CFG 
nodes contain constants that satisfy the definition of related 
constants, the resulting constants must be the related 
constants. Second, for a given path, we find all the target 
CFG nodes and then traverse the corresponding AST nodes 
of the target CFG node to find the related constants. Finally, 
we store the related constants and the corresponding 
operators and input variables. 

Code 1 

1 int f (int a[], int x){ 

2 x = strlen(a); 

3 if (x >= 3){ 

4 a[x] = 1; 

5 } 

6 … 

7 } 

Taking Code 1 as an example, the CFG and AST of Code 1 
are shown in Figure 2 for a given path: 0-1-2-3-5-6 (the 
numbers represent the CFG edges in Figure 2). We first 
determine the CFG nodes that need to be analysed: stmt_1, 
if_head_2, and stmt_3. Then, we traverse the corresponding 
AST nodes and find that the AST nodes corresponding to 
if_head_2 contain the special operation >=. The operands of 
the special operation >= are input variable x and constant 3. 
3 is the related constant of x. 

3.2 Analysing the data that has been extracted 

3.2.1 Under-constrained analysis 

The CBT approach generates test data by solving 
constraints of input variables. When the constraints of input 
variables are incomplete, the constraint solver needs to 
generate test data in a large solution space, which may 
produce test data that is difficult for humans to process (for 
example, the values of the test data are too large), resulting 
in poorly readable test data. 

 Under-constrained variables: An under-constrained 
variable is a variable whose constraint either has no 
upper or lower bound or no bound at all. For example, 
supposing that x is an input variable of the function 
under testing, for a given path, the constraint of x is  
x > 10; in this example, x does not have an upper bound 
of the constraint. If x is an int type (referring to the C 
language program), x will take a value between 11 and 
32,767 under the current constraint. If the value of x is 
too large, it will be difficult for a human oracle to 
process. 

 Integrated constraint variables: An integrated 
constraint variable is a variable whose constraint has 
both an upper and lower bound. 
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Figure 2 AST and CFG of Code 1 
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To understand the distribution of under-constrained 
variables in real-world projects, we have calculated the 
distribution of under-constrained variables in the real-world 
project double. Double is a double-precision mathematical 
function library, available from Astronomy and Numerical 
Software Source Codes (http://www.moshier.net/). We 
verify that a variable is under-constrained by analysing the 
obtained program constraints. The results are shown in 
Table 1. 

Table 1 The distribution of under-constrained variables in 
double 

Project Double 

Number of functions 277 

Number of paths 978 

Number of paths with under-constrained variables 734 

Number of paths without under-constrained variables 104 

Number of infeasible paths 140 

The CBT approach is path-oriented. For different paths in a 
function, the constraints of the input variables may be 
under-constrained or integrated, and as a result, we cannot 
determine whether an input variable is under-constrained or 
integrated in a function and can only more narrowly 
determine whether the input variable is under-constrained or 
integrated for a given path. In our analysis of double, we 
counted the number of paths with under-constrained 
variables (a path here refers to a path in the function, and 
the number of paths in Table 1 refers to the sum of the paths 
of a function in double). According to the results in Table 1, 
up to 75% of the paths in double contain under-constrained 
variables. If we do not add extra constraints to these 
variables, the program will generate a large number of test 
data that a human oracle may have difficulty processing. 

3.2.2 Aggregating and rating related constants to 
generate heuristic information 

After we obtain the related constants in the program, we 
must analyse them. Related constants act on input variables 
through various operators that have different effects on the 
input variables. According to the semantics and usage 
scenarios of these operators, the relationship between input 

variable values and constants can be determined by 
backward reasoning, and related constants are used to 
inspire and constrain the generation of test data. In this 
section, we first list all the specific operators involved in the 
extraction of the related constants and explain why these 
specific operators were selected. Then, we show how to 
generate the heuristic information by aggregating and rating 
related constants according to the semantics and usage 
scenarios of specific operators. 

3.2.2.1 Specific operators in related constant 
extraction 

Equal to (==) 

When the input variable and constant are related by ==, this 
indicates that the constant is one of the target values of the 
input variable. Furthermore, since the constant is set by the 
developer according to a certain specification, the constant 
is reasonable for both the input variable and the program 
under testing. The constant can be used directly to seed test 
data generation for the input variable and its related 
variables. 

Greater than or equal to (>=) and less than or equal 
to (<=) 

These two operators not only compare input variables and 
constants but also provide boundary values for input 
variables. Because the input variable can be equal to the 
related constant under the current operation, the related 
constant can be used as the boundary value of the input 
variable. In addition, since the constant is set by the 
developer according to a certain specification, it can also be 
used to seed test data generation. 

Function call (()) 

When the argument of the called function contains a 
constant, the constant is the related constant of the 
corresponding parameter. For example, supposing that 
function f(int x, int y) is called as f(a, 5), a is a variable in 
the calling function, and 5 is the related constant of y. Since 
the related constant obtained by the function call is set by 
the developer, the value of the related constant should be 
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reasonable to them; thus, we can also use this value to seed 
test data generation. 

Greater than (>) and less than (<) 

When a constant acts on an input variable through these 
operators, they indicate that the constant is comparable to 
the input variable. If the expected value of the input variable 
is much larger than the compared constant, then the 
comparison will become meaningless. Based on this 
reasoning, the value of the input variable under the current 
operation can be generated around the value of the related 
constant. Because the related constant is set by the 
developer according to a specification, the related constant 
is used to heuristically generate data that meet the 
requirements of the program and developers. 

Table 2 Related constant rates in real-world projects 

Project LOC 
Input 

variables 

Input 
variables 

with 
related 

constants 
(rate) 

Functions 

Functions 
with 

related 
constants 

(rate) 

128 bit 19,655 295 60 (20%) 204 51 (25%) 

Single 17,682 335 59 (18%) 170 48 (28%) 

Double 37,452 608 221 
(36%) 

246 144 
(58%) 

We collect and extract related constants based on the above 
operators and use the extracted related constants to generate 
readable test data. We applied the above operators to the 
extraction process of related constants and conducted an 
empirical analysis of real-world projects to see how many 
related constants could be obtained. Table 2 shows the 
results of our analysis. All the projects we used can be 
found at Astronomy and Numerical Software Source Codes; 
most of the inputs of these projects are numerical data types. 
As shown in Table 2, the rates of related constants vary in 
different projects. 

3.2.2.2 Aggregating and rating related constants 

When we obtain all the related constants in a project, we 
must analyse the related constants to generate the heuristic 
information. Not every variable has related constants – for 
instance, under-constrained variables may not have related 
constants. To generate heuristic information for all the 
under-constrained variables, we aggregate the related 
constants and generate heuristic information to produce 
extra constraints by analysing the aggregation results. We 
then rate the related constants by rating the specific 
operators and select the related constants with strong 
heuristics to seed the test data generation. 

Aggregating related constants 

Under-constrained variables may not have related constants, 
so we must generate heuristic information based on existing 

related constants. The number of related constants obtained 
by a single type of specific operator may be too small, 
thereby making it difficult to obtain valid information from 
these related constants. As a result, we aggregate all related 
constants to extract heuristic information. 

To obtain all the related constants in the project under 
testing, we aggregate the related constants obtained by each 
type of operator. Before analysing the aggregated data, we 
first clean the data for the purpose of removing outliers. 
Tukey’s test (Vardy and Moller, 2005) is used for data 
cleaning. 

First, we have to calculate the first quartile (Q1) and the 
third quartile (Q3). Q1 is defined as the middle number 
between the smallest number and the median of the related 
constant data set; Q3 is the middle value between the 
median and the highest value of the related constant data 
set. 

When the data set of related constants is arranged in 
ascending order, Q1 is given by equation (1), where rc 
denotes a related constant (same below). 

th
1

1
4

n
Q rc

   
 

 (1) 

Q3 is given by equation (2). 

th
3( 1)

3
4

n
Q rc

   
 

 (2) 

After obtaining Q1 and Q3, we can use equation (3) and 
equation (4) to calculate the upper limit (ul) and lower limit 
(ll) of the normal related constants. 

3 1.5 ( 3 1)ul Q Q Q    (3) 

1 1.5 ( 3 1)ll Q Q Q    (4) 

Any related constant not included between ul and ll is an 
outlier; we remove all outliers from the related constant data 
set to complete the data cleaning. We cleaned the data of the 
three projects presented in Table 2 and found that the 
outliers are related constants that appear either once or 
twice. Based on this result, we will try to remove related 
constants with lower frequency to simplify the data cleaning 
process in future experiments. 

When the data cleaning is complete, we can obtain the 
upper and lower limits (ul and ll) of the related constants. 
Excluding outliers, the related constants are distributed 
between ul and ll. Since all the related constants are set by 
the developer according to specifications, the aggregated 
data can, to a certain extent, reflect the expected values of 
the project under testing. Because an under-constrained 
variable has no upper or lower bound, we need to choose 
values between ul and ll as the constraint boundaries. The 
values should be points at which the balance is in 
equilibrium between ul and ll. However, the frequency of 
each related constant varies in the related constant data set, 
so we use the weighted arithmetic mean as the value. The 
weighted arithmetic mean can be calculated using  
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equation (5), where f denotes the frequency of the related 
constant. 

1

1

n

i i

i
n

i

i

f rc

c

f









 (5) 

We use c  as a constraint boundary to add an extra 
constraint for under-constrained variables. Since we do not 
know the relationship among existing constraint boundaries, 

,c  ul and ll, we need to determine the relationship by 
comparison and generate the corresponding extra 
constraints. Supposing that x is an under-constrained 
variable, Table 3 shows how to add an extra constraint to 
the under-constrained variable x, and the current constraint 
is the constraint of x for a given path. If the current 
constraint does not intersect with the interval formed by ll 
and ul, we increase or decrease the step value d to the 
existing constraint boundary to form an integrated 
constraint. The step value d can be given by the user or set 
to a fixed value. For other under-constrained variables in the 
project under testing, we can add extra constraints according 
to the rules in Table 3 to generate integrated constraints. 
When we finish generating the integrated constraints for the 
under-constrained variables, we use a constraint solver 
(Xing et al., 2014) to solve the constraints and generate 
readable test data. 

Table 3 Adding extra constraints to the under-constrained 
variables 

Type 
Current 

constraint 

Relationship 
among c1, 

c2, ,c  ll and 
ul 

Extra 
constraint 

Integrated 
constraint 

x > c1 c1 < c  x < c  c1 < x  
< c  

x > c1 c  < c1 < ul x < ul c1 < x  
< ul 

Missing 
upper 
bound of 
the 
constraint 

x > c1 c1 > ul x < c + d c1 < x  
< c1 + d 

x < c2 c2 > c  x > c  c  < x  
< c2 

x < c2 ll < c2 < c  x > ll ll < x  
< c2 

Missing 
lower 
bound of 
the 
constraint 

x < c2 c2 < ll x > c2  
– d 

c2 – d  
< x < c2 

Missing 
constraint 

x N/A ll < x < 
ul 

ll < x < ul 

Rating related constants 

We have provided four types of specific operators in the 
above section. Due to the differences in the semantics of 
each type of operator, the heuristic ability of the  
 
 

corresponding related constants also varies. For example, 
the related constants obtained by function call are values set 
by the developer, and these values are reasonable for the 
developer. The related constants obtained by greater than 
(>) or less than (<) indicate that the related constants and the 
corresponding input variables are comparable; we speculate 
that the input variable values may be close to the related 
constants, but this is only a conjecture and may not be 
accurate. 

According to the semantics of each type of specific 
operator and the heuristic ability of the corresponding 
related constants, we divide the specific operators into two 
groups: strong heuristics and weak heuristics. Strong 
heuristic operators include equal to (==), greater than or 
equal to (>=), less than or equal to (<=), and function call 
(()). Weak heuristic operators include greater than (>) and 
less than (<). The corresponding related constants are strong 
heuristic-related constants and weak heuristic-related 
constants. 

We collect all the strong heuristic-related constants as 
the start point to seed the generation and index the related 
constants for test data generation. For an integrated 
constraint variable, we first query whether the variable has 
strong heuristic-related constants and determine if it 
satisfies the constraints. If the constants satisfy the 
constraints, we will use the constants as the test data. If the 
constants do not satisfy the constraints, we will use the 
constants to increase or decrease the fixed value to try to 
satisfy the constraints and use the value that satisfies the 
constraints as the test data. 

4 Evaluation 

The approach is integrated into CTS, which is an automated 
unit testing tool for C code. To evaluate our approach, CTS 
is divided into two versions: CTS with related constant 
analysis and CTS without related constant analysis  
(CTS-Basic). The objective of the experiments was to 
investigate the following research questions. 

RQ1 Does our approach help CTS improve the efficiency 
of test data generation? 

To answer RQ1, we evaluated the test data generation times 
of CTS and CTS-Basic. 

RQ2 Does our approach help CTS generate test data that 
is more convenient for a human oracle? 

To answer RQ2, we compared the readability of the test 
data generated by CTS and CTS-Basic. 

The experiments are conducted on the real-world project 
double. We use a simple random sampling method to select 
25 of the functions in double that contain under-constrained 
variables. For these functions, we run CTS and CTS-Basic 
to generate test data and record the time and test data. The 
experiments in the evaluation were run on a laptop with a 
2.20 GHz CPU and 8 GB RAM running an Ubuntu-14.04 
operating system. 
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Figure 3 Test data generation times of CTS and CTS-Basic (see online version for colours) 

 

Figure 4 Means of test data (floating-point data types) of CTS and CTS-Basic (see online version for colours) 

 

 
4.1 RQ1 

The results of the test data generation times of CTS and 
CTS-Basic are shown in Figure 3. Figure 3 shows that for 
most of the functions under testing, the test data generation 
time of CTS is shorter than that of CTS-Basic. This is 
because CTS-Basic does not add extra constraints to  
under-constrained variables, and the constraint solver needs 
to generate test data in a large solution space, which leads to 
a longer generation time for CTS-Basic. To generate 
integrated constraints for under-constrained variables, CTS 
obtains heuristic information by mining and analysing 
related constants and uses the heuristic information to 
generate extra constraints or seed test data generation. The 
integrated constraints generated based on heuristic 
information not only reduce the solution space but also 
constrain the test data within a reasonable interval. As a 
result, we can obtain test data in a shorter time by using 
CTS. 

4.2 RQ2 

Since the main purpose of our approach is to generate 
readable test data, we need to evaluate the generated test 
data. For test data of numerical data types, there is no 
uniform standard to determine what kind of test data is 
readable. However, because we generate readable test data 
for the convenience of a human oracle, for humans, the 
smaller the size of the data, the more convenient it is to 
calculate (in the case where the absolute values of the 
compared data is greater than 1 and the numbers of digits 

are similar, not 1.1 and 1.00000001, or 0.01 and 
0.0000001). In this experiment, we determine whether the 
test data is convenient for a human oracle by comparing the 
size of the generated test data. 

1

n

i

i

t

t
n




 (6) 

To compare the size of the generated test data, we use 
equation (6) to calculate the mean of the test data for the 
function under testing, where t denotes test data. In this 
experiment, we focus only on floating-point test data. 

As shown in Figure 4, the test data generated by CTS is 
significantly smaller than those generated by CTS-Basic. 
These results indicate that adding extra constraints based on 
heuristic information can effectively limit the size of the test 
data. Compared with the test data generated by CTS-Basic, 
the test data generated by CTS is smaller and more 
convenient to calculate. Therefore, for developers, the test 
data generated by CTS is more readable than those 
generated by CTS-Basic. The mean value generated by CTS 
is greater than that generated by CTS-Basic for the three 
functions acos, bdtrc, and gdtr. There are two reasons for 
this. First, the constraint of an under-constrained variable 
may not intersect with the interval formed by ll and ul; this 
causes the variable to generate test data in a larger interval. 
Second, our constraint solver randomly takes values within 
the interval corresponding to the integrated constraint. 
Although CTS-Basic lacks constraints, it is possible for 
CTS-Basic to generate smaller test data than CTS. 
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4.3 Threats to validity 

Threats to internal validity are concerned with possible bugs 
in the implementation of our approach. To reduce these 
threats, we performed a manual check to review all the code 
we produced for correctness. 

Threats to external validity regard the potential bias in 
the selection of projects used in the evaluation. These 
threats are related to the following question: were the 
programs we selected representative? To reduce these 
threats, we tried to remove any bias related to the selection 
of samples by adopting a third-party benchmark. However, 
there is a chance that the samples are still not representative. 

Threats to construct validity are concerned with whether 
our measurements reflect real-world situations. In our study, 
we used criteria to measure the performance of our 
approach, including the size of the generated test data and 
the test data generation time. However, these two criteria do 
not take the human costs (such as determining how to 
aggregate and rate related constants) into account. 

5 Related work 

The test data generated by an automated test data generation 
approach is usually unrealistic and unreadable (Fraser et al., 
2015; Fraser and Arcuri, 2013), and approaches have been 
presented to deal with this problem. 

Some approaches that incorporate knowledge about the 
input of the program into the automated test data generation 
process are used to generate readable test data, and the 
knowledge can be extracted from experts, source code, the 
web and so on. Shahbaz et al. (2012) presented an approach 
for generating values for string data types by finding valid 
string inputs on the web. However, the identifiers used to 
generate web queries must be meaningful. The identifiers in 
an object-oriented program are usually meaningful, but in a 
C program, a meaningful identifier is hard to find. A similar 
approach was presented by McMinn et al. (2012) to extract 
knowledge from the internet and use the knowledge as 
string inputs. The method of splitting identifiers into 
constituent words used in this paper is based on 
underscoring and camel casing. Bozkurt and Harman (2011) 
acquired test data from the compositions of many existing 
web services. Their work can only deal with programs that 
require structural and semantic data as input, for example, 
using ISBNs or ZIP codes as program inputs. 

Afshan et al. (2013) presented an approach in which a 
natural language (NL) model is incorporated into a  
search-based input data generation process, and the NL 
model is used to assign a probability score to string test 
data, with the score ranking the readability of the generated 
string test data. However, the NL model requires various 
types of text to train the model to deal with any string.  
 
 
 
 
 

McMinn et al. (2010) extracted constraints from the 
program under testing; these constraints were extracted 
based on sanitisation routines or defensive programming 
constructs and used to ‘correct’ automatically generated 
inputs. However, not every program has such constraints. 

Because the test data values produced by automated test 
data generators are arbitrary-looking, these values are 
difficult to understand and maintain. Some works have 
sought to improve the comprehensibility of test data or 
reduce the workload of testers. Panichella et al. (2016) 
proposed an approach that automatically generates test case 
summaries of programs to improve understandability. They 
extracted information from code and code comments, 
including verbs, nouns, and prepositional phrases that can 
be expanded to generate readable NL sentences. However, 
this work requires the quality of the code to be good 
enough; if not, there will not be enough information to 
generate the summaries. Li et al. (2016) presented an 
approach to automatically generate NL documentation of 
unit test cases to ameliorate the burden of maintaining unit 
test cases for developers. Since reducing the workload of 
testers can give testers more time to comprehend unreadable 
test cases, improving the understandability is also widely 
related to the test size (Athanasiou et al., 2014). Fraser and 
Arcuri (2013) proposed an approach to reduce the number 
of generated tests by applying post-process minimisation. 

6 Conclusions 

In this paper, we have presented an approach to generate 
readable test data and implemented our approach in a tool 
called CTS. CTS can mine related constants from projects 
by analysing specific operators. Then, CTS can obtain 
heuristic information by aggregating and rating the mined 
related constants and use the heuristic information to 
generate integrated constraints for under-constrained 
variables or seed the test data generation process. Since 
most related constants are set by the developer according to 
certain specifications and are reasonable for the program 
under testing, the heuristic information is also reasonable. 
As a result, by using the heuristic information, CTS reduces 
the solution space of under-constrained variables and 
improves the efficiency of test data generation. 
Furthermore, due to the addition of heuristic information, 
the test data generated by CTS is smaller and more 
convenient for a human oracle. 
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