Atomic force microscope-based nanomanipulation with drift compensation
by Qinmin Yang, S. Jagannathan
International Journal of Nanotechnology (IJNT), Vol. 3, No. 4, 2006

Abstract: Automating the task of nanomanipulation is extremely important since it is tedious for humans. This paper proposes an atomic force microscope (AFM) based force controller to push nano particles on the substrates. A block phase correlation-based algorithm is embedded into the controller for the compensation of the thermal drift which is considered as the main external uncertainty during nanomanipulation. Then, the interactive forces and dynamics between the tip and the particle, particle and the substrate including the roughness effect of the substrate are modelled and analysed. Further, a neural network (NN) is employed to approximate the unknown nanoparticle and substrate contact dynamics. Using the NN-based adaptive force controller the task of pushing nanoparticles is demonstrated. Finally, using the Lyapunov-based stability analysis, the uniform ultimate boundedness (UUB) of the closed-loop tracking error, NN weight estimates and force errors are shown.

Online publication date: Fri, 20-Oct-2006

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com