Adaptive robust control of a four-cable-driven parallel robot
by Arash Kiani; Seyed Kamaleddin Mousavi Mashhadi
International Journal of Computational Vision and Robotics (IJCVR), Vol. 10, No. 6, 2020

Abstract: This present study introduces an adaptive control strategy for four-cable robots. An adaptive sliding mode control to overcome the uncertainties of the system as well as avoidance of estimating an upper bound of the system uncertainties is presented. The proposed controller is designed based on the Lyapunov stability theory. Therefore, it ensures the stability of the closed-loop system and makes the tracking error converge to zero. In this robot, the cables can only pull the end-effector but not push it; therefore, we present a simple mathematical solution to design a positive tension controller for the cable suspended robot with redundant cables. The properties of the proposed method such as high performance tracking, disturbance rejection and insensitivity to parameter variations are demonstrated by simulation.

Online publication date: Tue, 27-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Vision and Robotics (IJCVR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com