Wind turbine blades icing failure prognosis based on balanced data and improved entropy
by Cheng Peng; Qing Chen; Xiaohong Zhou; Songsong Wang; Zhaohui Tang
International Journal of Sensor Networks (IJSNET), Vol. 34, No. 2, 2020

Abstract: To improve the accuracy of icing failure prediction, which is often limited due to unbalanced condition data, a novel balancing algorithm based on boundary division synthetic minority oversampling technology (BD-SMOTE) and a method for predicting the icing failure of wind turbine blades in the short term based on multiple neural network combination are presented. First, the original data set obtained by sensors is balanced by BD-SMOTE. Then, the key features are extracted by multivariate and multiscale entropy based on a continuous smooth coarse (CSMMSE) algorithm, and the values of three kinds of features in the near future are predicted by the Elman neural network (ENN). Finally, a back-propagation (BP) neural network is adopted to predict the icing failure of wind turbine blades. Compared with the results of other methods, the prediction deviation of the ENN is smaller; the prediction results demonstrated the effectiveness and superiority of the proposed method.

Online publication date: Tue, 20-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sensor Networks (IJSNET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com