Numerical simulation and three-phase pressure transient analysis considering capillary number effect – case study of a gas condensate reservoir
by Kambiz Davani; Shahin Kord; Omid Mohammadzadeh; Jamshid Moghadasi
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 25, No. 3, 2020

Abstract: When the wellbore pressure drops below the dew point pressure of gas in a gas condensate reservoir, there is the possibility of condensate bank build-up and wellbore blockage. These adverse processes result in development of different mobility zones around the wellbore which complicates the pressure transient test analysis. The focus of this study is on the analytical and numerical analysis of pressure testing data obtained from a well in a target gas condensate reservoir. First, the well test data were analytically interpreted through which several well and reservoir parameters were identified such as condensate bank radius, gas effective permeability, mechanical skin and skin due to non-Darcy flow. A three-phase compositional reservoir model was then built using the analytical solution, for numerical analysis of the pressure transient data as well as validation of the analytical results. This numerical model was then used to estimate well deliverability and predict future reservoir performance. [Received: August 17, 2018; Accepted: March 15, 2019]

Online publication date: Mon, 19-Oct-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com