Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation
by Ruangrit Sarangkum; Kittinan Wansasueb; Natee Panagant; Nantiwat Pholdee; Sujin Bureerat; Ali R. Yildiz; Sadiq M. Sait
International Journal of Vehicle Design (IJVD), Vol. 80, No. 2/3/4, 2019

Abstract: This paper proposes an optimisation process for the design of aircraft fuselage stiffeners using evolutionary optimisation. A new design problem is developed to find a layout for fuselage stiffeners (rings and stringers) such that the structural mass, compliance, and the first-mode natural frequency can be optimised, subject to structural constraints. The stiffeners are modelled as beam elements. Three multiobjective meta-heuristics are employed to solve the problem, and a comparative study of the results of these optimisers is carried out. It is found that the proposed layout synthesis problem for aircraft fuselage stiffeners leads to a set of efficient structural solutions, which can be used at the decision-making stage. It is an automated design strategy with high potential for further investigation.

Online publication date: Mon, 28-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Design (IJVD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com