Research on information popularity prediction of multimedia network based on fast K proximity algorithm Online publication date: Thu, 24-Sep-2020
by Hongtao Zhang
International Journal of Autonomous and Adaptive Communications Systems (IJAACS), Vol. 13, No. 2, 2020
Abstract: In order to improve the accurate prediction ability of multimedia network information popularity, a multimedia network information popularity prediction algorithm based on fast K neighbour algorithm is proposed. Big data mining and feature extraction of multimedia network information popularity prediction are carried out by using discrete sequence analysis method. Based on the idea of fast K-neighbour clustering, the ordered clustering of the statistical feature series of multimedia network information flow is carried out. Combined with fuzzy autocorrelation fusion analysis method, the autocorrelation characteristics of multimedia network information flow statistical time series are extracted, the fuzzy correlation set of multimedia network information popularity is analysed by principal component analysis method, and the improved design of network information popularity prediction algorithm is realised based on fast K-neighbour algorithm. The simulation results show that the method has high accuracy and adaptability, and has good ability of information prediction and statistical analysis.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Autonomous and Adaptive Communications Systems (IJAACS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com