A novel DeepCNN model for denoising analysis of MRI brain tumour images
by B. Srinivas; Gottapu Sasibhushana Rao
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 13, No. 2/3/4, 2020

Abstract: Medical images must be introduced to the specialists or doctors with high accuracy for the diagnosis of critical diseases like a brain tumour. In this paper, a novel DeepCNN model is proposed to perform MRI brain tumour image denoising task and the results are compared with pre-trained DnCNN, Gaussian, adaptive, bilateral and guided filters. It is found that DeepCNN performs better than other filtering methods used. Different noise levels ranging from 5 to 50 and noises like salt and pepper, Poisson, Gaussian, and speckle noises are used to form the noisy images. Performance metrics like peak signal to noise ratio and structural similarity index are calculated and compared across all filters and noises. The proposed DeepCNN model performs well for denoising with the unknown and known noise levels. It speeds up the training process and also improves the denoising performance because of using 17 convolutional layers and batch normalisation.

Online publication date: Wed, 09-Sep-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com