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Abstract: Industrial process digitalisation is pervading numerous areas of 
production system, including sustainability. The study presents a method to 
affirm how the social sustainability of a company also passes through the 
protection of the welfare of the worker and describes a case study focused on 
small and medium-sized enterprises (SMEs). The method considers different 
aspects including the characteristics of the worker/s, the working context, and 
the content of the work activity. According to the objectives of social 
sustainability in the factory environment multifactorial variables related to the 
workers wellbeing have been defined. IoT system and ad-hoc questionnaires 
can be used to collect such variables. Following the proposed method, the 
results of the case study offer many in-depth insights, from the objective 
analysis of personal characteristics to the organisation of work, and from the 
application of international standards to the evaluation of psychological 
parameters. 
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1 Introduction 

Although the fourth industrial revolution focuses on digitalisation of processes, it cannot 
neglect the sustainable development goals (United Nations, 2015). In particular, new 
social challenges imply sustainable work environments that promote healthy life, well-
being for all at all ages and job satisfaction. Moreover, ‘human-centricity’ will play a key 
role in factories of the future to achieve flexibility, agility, and competitiveness. 
Accordingly, also human factors have been integrated with other existing models (i.e., 
cost estimation and lifecycle assessment) to evaluate a global manufacturing process 
sustainability (Peruzzini and Pellicciari, 2017). 

Social sustainability in production sites includes workers’ rights, preventive 
occupational health and safety, human-centred design of work, workers’ empowerment, 
individual and collective learning, employee participation, and work-life balance. 
Improving workplace practices beyond legal compliance can result in higher morale and 
job satisfaction. All these concepts aim to preserve or build up human capital, and they 
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represent a conscious way to deal with human resources. In 2014, Zink (2014) focuses on 
the needs of adopting sustainable production system, including also the human and social 
capital (e.g., health, motivation, participation, trustworthiness, skills, knowledge, 
identification). Docherty et al. (2009) stated that the opportunity to develop as a person, a 
professional and a member of a society through work experiences is a basic human right. 

If transforming a company from profit-motivated to environmental sustainability-
focused requires a nature-centred leadership process (Midouhas, 2017), the social 
dimension remarked the key role played by ergonomics and human factors also in the 
new manufacturing paradigms (Siemieniuch et al., 2015). Indeed, in social sustainability, 
ergonomics would be one of the main aspects integrated into the health and safety 
requirements (Jasiulewicz-Kaczmarek, 2013). The term ergonomics concerned with the 
study of work to fit with people. In 2013, among the people in the EU-28 7.9% reported 
work-related health problems, which mainly refers to musculoskeletal disorders (60.1%) 
and stress, depression and anxiety (15.9%) (Eurostat, 2019). From this viewpoint, the 
majority of workplace accidents and diseases are preventable; therefore, it is necessary to 
promote a sustainable prevention and encourage greater participatory efforts to achieve 
safer and healthier workplaces. It means to apply ergonomics principles to the entire 
organisation considering physical, cognitive, social, environmental and organisational 
aspects together. 

Moreover, the digital transformation is changing the modern factories with a potential 
great advantage for their sustainability. Indeed, within the so-called ‘smart factory’ new 
competencies and skills to handle with digital systems are requested (The Boston 
Consulting Group, 2015); at the same time, the factory workers become ‘operators 4.0’ 
(Peruzzini et al., 2020) and have to interact with new manufacturing systems, the so-
called cyber-physical systems (CPS). In this contest, the definition and implementation of 
participatory ergonomics programs could enhance people awareness, increases 
acceptance of control implementations and effectively support the adoption of the 
worker-centred approach (Burgess-Limerick, 2018). This trend represents one of the most 
important challenges according to a transdisciplinary approach (Wognum et al., 2019).  
In factories of the future, robots (including new safety systems) and other complex CPS 
will allow reducing the worker physical effort and compensating many worker limitations 
due to age, inexperience, inappropriate skill, etc. However, workers will increasingly 
have to program, manage and maintain manufacturing systems, therefore, the 
enhancement and support of their cognitive skills will become increasingly important to 
create human-centred workplaces. In this context, new risks and stressors will need to be 
addressed (Birkel et al., 2019). For this aim, industry 4.0 should push towards  
the development of methods and tools for a continuous adaptation of workplaces to the 
workers’ capabilities considering also the respective criteria and requirements of  
health and safety at work. Systems or framework to enable unobtrusive and  
integrity-protecting monitoring of workers will be needed. 

There are different techniques for ergonomics assessments, based on self-reports on 
perceived workload (e.g., NASA-TLX, SWAT, MCH) or observational scoring models 
(e.g., RULA, OCRA, REBA). Both are popular in industrial environments (Westgaard 
and Winkel, 2011), however, they are lacking in objectivity and completeness. The use of 
physiological parameters is often limited to single analysis to define (re)design criterions 
(e.g., human-robot collaboration (Arai et al., 2010)) or simulate tasks related to specific 
sector (e.g., aviation (Hidalgo-Muñoz et al., 2018)). Objective measures of a person’s 
behaviour and effort is not used as a day to day tool due to its complexity and 
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obtrusiveness (Shafti et al., 2016). However, with advances in IoT their regular use in the 
near future seems possible. The literature survey of Ruppert et al. (2018) demonstrated 
that smart sensors and wearable devices can enable the operators’ integration into the 
concept of smart factories. IoT systems are an opportunity to simultaneously manage the 
acquisition of data useful for the evaluation of variables which concretely define a certain 
environment, process or system in which a person lives, works or is simply physically 
present. For this reason, the IoT system has been seriously considered in the study 
because the variables of interest identified were many and to quantify and process them 
you need the support of an integrated system of multiple tools. Bortolini et al. (2020) 
proposed one of the first effective research contributions of motion capture technologies 
for productive and ergonomic analysis of the operator during his work. 

In this context, the present work aims to answer to the following research questions: 

1 How it is possible to measure the overall workers’ experience? 

2 How IoT can support the ergonomics assessment? 

3 Which is the best way to define and develop a sustainable plant model from a social 
point of view? 

In particular, the paper proposes a method for the sustainable development of factories of 
the future, matching human factors and IoT. It allows defining, quantifying, measuring, 
monitoring and improving social sustainability at workplace. 

According to this purpose, the remainder of this paper is organised as follows.  
Section 2 presents the method used to create a system of analysis of the variables of 
social sustainability in the production sectors for which the welfare of the worker is 
fundamental, with a view to enhancing and optimising human resources.  
In Section 3, the method was applied to a real case study in a manufacturing 
environment, with subsequent presentation of the results and discussion. 

2 Research methodology 

If the above-mentioned scientific literature addressed the wellbeing of the operator and 
his role in the context of industry 4.0 from different and complementary viewpoints,  
it also highlighted the lack of holistic and proactive approaches to take care of the 
operator issue and industrial social sustainability. In fact, there are no frameworks, 
methods and tools that enrich physical and process perspective of work to understand 
other relevant aspects in order to enhance the human capital and to consider concretely, 
constructively, and globally its wellbeing in the working context. As a matter of fact, 
there is a need for new approaches to support the planning and evaluation of work, in a 
production context characterised by the presence of human workers and CPS. Therefore, 
this research defines a method to promote a sustainable plant model from a social point of 
view, with attention to the needs of the operators within the workshop. In particular, it 
proposes a methodology to design a proper IoT infrastructure able to acquiring a set of 
human-related parameters from the plant, in order to evaluate and improve the workers’ 
wellbeing as well as the company performance, as proposed in Figure 1. The proposed 
model is based on three steps: 
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1 measure of the operators’ and factory performance by a structure procedure (aim 
definition, variable and sensors selection, framework creation and data collection) 

2 evaluation of the operators’ and factory performance by a predefined set of rules 

3 improve the operators’ and factory social sustainability. 

The final aim of the proposed social sustainable plant model should be the achievement 
of the best trade-off between production objectives and physical-cognitive needs of 
individuals operating in the production context. However, each specific IoT configuration 
needs a specific driver for a proper design. Therefore, Step1 consists in defining all 
framework goals in order to create an organised data network. For this aim, the main 
goals (G) have been identified and classified, as shown in Table 1. 

Figure 1 The IoT framework for human-centred manufacturing (see online version for colours) 

 

Table 1 Classification of framework goals 

Area Goal 
G1 Factory performance G1.1 Increase productivity 
  G1.2 Improve quality 
  G1.3 Increase organisational incentives 
  G1.4 Reduce employee complains 
  G1.5 Reduce employee turnover 
G2 Perceived workload G2.1 Reduce mental demand 
  G2.2 Reduce physical demand 
  G2.3 Reduce temporal demand 
  G2.4 Improve performance 
  G2.5 Reduce effort 
  G2.6 Reduce frustration 
  G2.7 Increase job satisfaction 
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Table 1 Classification of framework goals (continued) 

Area Goal 
G3 Work-related diseases G3.1 Reduce absenteeism 
  G3.2 Reduce accident rate 
  G3.3 Reduce sickness absence 
  G3.4 Ensure vacation 
  G3.5 Reduce musculoskeletal disorders 
  G3.6 Reduce stress and mental health disorders  
  G3.7 Reduce work-related cancer 
  G3.8 Reduce biological agents exposure 
  G3.9 Increase work capacity 
G4 Knowledge G4.1 Increase risk control 
  G4.2 Increase operations skills 
  G4.3 Increase technology skills 
G5 Workplace G5.1 Ensure ergonomic workstation 
  G5.2 Ensure ergonomic environment 
  G5.3 Improve human-automation collaboration 
  G5.4 Improve human-human collaboration 

A connected factory can provide a lot of human-related data referring to biometric 
measures, tasks, environment and the interaction between man and the surrounding 
ecosystem. The added value is to understand which are significative according to the goal 
of the analysis. For this aim, the variables of the system (V) and the IoT devices able to 
collect them as well as alternative sources should be identified in Steps 2 and 3 
respectively. To support this phase, all the variables have been classified as shown in the 
following tables. For each of them, the following items have been specified: 

• IoT devices able to collect the variable 

• traditional sources such as company DBs, direct observation and operator interview 
by means of questionnaires, checklists, rating scales, etc. 

• references (standards or methods) for the elaboration of data. 

Table 2 classifies the characteristics of the worker such as demographic and 
anthropometric information, acquired skills, personal needs and any physical or cognitive 
limitations for the performance of specific tasks. These data are necessary for carrying 
out a tailored ergonomic analysis. For example, operators with scoliosis and 
hyperlordosis, if present in a relevant form, have more chances of having back problems 
associated with their working activity. 

In general, the worker’s characteristics, due to their nature, are collected manually by 
an ergonomist by interview or questionnaire. 

The second category of variables refers to biometric parameters that can be measured 
during job activity (Table 3). These are vital parameters that may highlight excessive 
physical exertions or indicate particularly stressful conditions, such as respiratory and 
cardiac frequency. In addition, the Galvanic skin response (GSR) can be easily collected 
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by low-cost sensors; it measures the variations in the electrical characteristics of the skin, 
following the variation of the human body sweating. Also the electroencephalography 
(EEG) signal that gives indications on cognitive activity, and the electromyography 
(EMG) signal that provides indications on muscle involvement, can be considered. 
Finally, eye parameters like blinks, pupil diameter, or fixations and saccades duration, 
can be monitored to detect fatigue or evaluate the level of concentration/attention. It is 
worth to specify that the above-mentioned physiological measures are often combined to 
ensure a higher accuracy in recognising potentially risky conditions (e.g., stress detection 
(Can et al., 2019)). Finally, there are all the information that allows an accurate 
description of postures and movements, considering other risk elements such as 
frequency, strength, duration and stereotypy. The collection and elaboration of the 
worker’s biometric measures can be supported by several wearable sensors and  
well-known methods for postural risk analysis. 

Table 2 Matching between worker’s characteristics, data source, data elaboration methods, 
and reference standards 

Worker’s characteristics Source Reference 

V1 Demographic 
variables 

V1.1 Gender, age DB  

V2.1 Anthropometric measures Direct acquisition V2 Anthropometry 

V2.2 Body mass index Interview 

ISO 7250 (2017), 
ISO 15535 (2013) 

V3 Functional 
capabilities 

V3.1 Reduced functional 
capabilities 

DB, Interview  

V4.1 Skills DB, Interview  V4 Knowledge 

V4.2 Expertise DB, Interview  

V5 Personal needs V5.1 Family composition, mobility, 
leisure, diet 

DB, Interview  

Table 4 classifies all the variables (V) related to the task in order to perform an 
ergonomic evaluation of the biomechanical overload of the whole body. In order to 
evaluate the task-related risks in an accurate and exhaustive manner, it is essential to 
perform a systematic decomposition of operations and movements in standardised work 
units, identifying times and execution modalities. Both ‘dynamic’ and ‘static’ actions and 
the relative duration and frequency must be monitored. Actions that require the use of a 
force are also included. They can be assessed using dedicated instruments or interviews 
to workers who are asked to describe the subjectively perceived muscular effort related to 
a certain body segment. Also, the use of force must be quantified temporally. In the case 
of manual handling of loads, it is necessary to keep track of the object weight and the 
distances travelled. In the case of precision movements, an important aspect is related to 
the size of the work areas. Specific indicators can be defined and used to evaluate 
cognitive activity in relation to the information understanding, initiatives undertaken, 
solved problems, level of attention, mental workload and so on. In this case, it is 
advisable to keep track of the work instructions provided in order to identify 
opportunities for improvement to simplify the task execution. In this case, a low-cost 
EMG bracelet can be used to monitor most of physical activities and smart glasses (or 
eye tracker) can support the analysis of the cognitive ones. 
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Table 3 Matching between worker’s biometrics measures, data source, data elaboration 
methods and standards 
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Table 4 Matching between task measured parameters, data source, data elaboration methods 
and standards 
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Table 4 Matching between task measured parameters, data source, data elaboration methods 
and standards (continued) 
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Table 5 Matching between workplace measured parameters, data source, data elaboration 
methods and standards 
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Table 5 Matching between workplace measured parameters, data source, data elaboration 
methods and standards (continued) 
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There is strong evidence from the literature that MSDs are not exclusively linked to the 
biomechanical factors of posture, strength, repetition and duration, but also to the 
organisation of work and the psychosocial aspects of the working context: work content 
and scheduling, relationships, errors, etc. In other words, all factors that directly or 
indirectly influence the quality of life of workers must be considered. For this aim,  
in Table 5 all variables that characterise the workplace are considered: 

• environment, in terms of microclimate, lighting, noise, odours and exposure to 
agents 

• workstation, in terms of layout, work area, work surface lighting and visibility 

• human–human interaction that aims to evaluate the operators’ behaviours, attitudes 
and ability to work in a team 

• human–machine interaction, evaluated by the most common usability indicators such 
as task success, time taken, errors committed, etc. 

• human–robot interaction, which includes all the information needed to define the 
task execution modalities in terms of space (physical and temporal) and product 
sharing, systems enabling a safe collaboration and robot programming techniques. 

Workplace data variables are mainly collected through environmental sensors, workers’ 
self-assessment, and direct observation or retrieved by company data. 

In Figure 2, a matching matrix between goals and variables is proposed. It aims to 
support the selection of most proper variables according to the specific framework aims, 
to implement the proposed methodology. Workers’ skills and expertise are strictly 
correlated to the all goal areas. Indeed, the investment in training and continuous 
development of employees allows making them feel more valued, competent and 
confident in their roles; boosting their performance (productivity and quality); increasing 
the risks awareness; and encouraging a safely use of equipment and the respect of 
ergonomics principles. Workers’ characteristics (age, gender, anthropometric measures) 
and physiological measures allow better understanding the overall effort to which 
workers are subjected and possible risks to which they are most exposed. Workstation 
characteristics and the non-ergonomic execution of manufacturing activities in terms of 
posture, frequency, load, etc. directly influence productivity, quality, the likelihood of 
accidents and the onset of work-related disorders, which in turn can generate absenteeism 
and complains. Similarly, frustration, dissatisfaction and work-related stress can be 
generated by complex tasks that require cognitive skills that do not fit the workers’ 
capabilities and human-machine interaction, as well as difficult employee relations. 
Organisational factors can mainly give rise to an excessive workload, which in turn 
influence the worker fatigue and concentration. Consequently, an appropriate 
management of shifts/breaks and a proper job allocation can reduce the likelihood of 
human errors and accidents. 

Once selected variables and the data source, the selection of sensors occurs (Step 4).  
It is based on multiple criteria such as cost, accuracy, intrusiveness, interoperability, 
sensitivity to external events/sources, etc. and the relative importance assigned by the 
company. This step should focus on minimising the costs and the equipment. Simpler is 
the network, simpler will be data interpretation. To simplify here do not means to have 
less information but avoiding infobesity. In a lifecycle perspective, more sensors mean 
more maintenance, more updates, and more IoT variables. 
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Figure 2 Matching between goals (G) and variables (V) 
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In Step 5 the framework is assembled in the environment. It permits to realise an 
intelligent ecosystem where data generates corrective actions that should be executed 
manually or automatically. This step is strictly correlated to Step 6. In fact, it is necessary 
to convey data in a single device (e.g., database manager) in order to properly collect, 
manage and elaborate them. 

According to the standard and the selected evaluation method, the analysis of the data 
allows identifying which activities have a greater impact on the operators and, through 
intelligent algorithms, define the corrective actions (Scafà et al., 2019) to be implemented 
in order to modify the productive environments towards their needs, defining a dual 
functioning paradigm of human-machine integration. For this aim, a set of rules should 
be defined (Step 7). They should manage the influence between variables in order to 
exclude false alarms; verify the presence of a risk by using multiple sources and detect 
possible anomalies by correlating multiple factors. The final goal is to define the optimal 
conditions for the 4.0 operator that interacts with advanced technology systems 
(collaborative robots, augmented reality technologies, etc.) towards the standardisation of 
advanced skills necessary for the management of the factory of the future. 

Finally, the installation of proper actuators (Step 8) enables the automatically 
execution of corrective actions according to the rules defined in the previous step. 

3 Industrial case study 

The case study has been realised in collaboration with an Italian SME. It is one of the 
main manufacturer of rubber and polyurethane soles for shoes in Italy and also 
worldwide. The company was already committed to the mission of corporate 
sustainability and joined this research in order to explore the adoption of innovative 
methods and wearable devices to benefit social sustainability. In fact, in 2017 it has 
drawn up the global reporting initiative (GRI), which encompasses the main global 
reference standards for reporting the sustainability performance of an organisation/ 
enterprise; the particular GRI 403 concerning health and safety in the workplaces.  
The company has an average production capacity of 14 million soles per year,  
about 90,000 per day. The number of employees is 247, of which 170 are workmen.  
The production area is subdivided in departments, each for a different phase of soles 
manufacturing. 

The study involved four operators. The working area involved in this case study is the 
last phase of the painting process, where the soles are boxed and packed to be shipped 
(Figure 3). This area consists in a 70 sqm surface and usually occupied two operators. 

The operators observed and analysed perform the same operations; average data are 
shown. In particular, they take soles from a conveyor belt and pack them into boxes. That 
conveyor belt is the last part of the semi-automated painting machine where the soles 
gradually flow after drying phases. The conveyor belt collects 1100 soles per hour. This 
area is active two shifts out of five days a week. The morning shift starts at 5:00 am to 
1:00 pm; the afternoon shift is from 1:00 pm to 9:00 pm. For each shift, there are two 
operators and there is a break of 20 minutes after 4 h. 
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Figure 3 Working area of the industrial case study (see online version for colours) 

 

The soles are produced in batches. This means that the same product is always produced 
in each shift on the conveyor belt. Empty boxes are prepared and positioned on the 
working stand. When the box is ready on its support, the operator proceeds to print the 
box label according to the production schedule. Each box has its label showing the 
model, size and quantity. The PC is located near the box holder. Then, the product 
picking and packaging began. The products flow on the conveyor belt, and the operator 
selects the correct size and pairs and fill the box. Paint quality control is intrinsic to the 
packaging task. Soles are packed in layers and divided by plastic foil. There is a stack of 
sheets that the operator must separate then put in the boxes in order to ensure that the 
soles do not damage during transport to the customer. Before the close, each box must be 
filled with the right number of soles. Periodically, an operator with a forklift truck picks 
up the complete pallet and transfers it to the finished product warehouse. It is worth 
specifying that only one operator interacts with the computer to print the label, which will 
be placed on the boxes. 

Considering the scenario and the steps presented in the method the main goals have 
been identified: 

• reduce mental demand (G2.1) 

• reduce physical demand (G2.2) 

• reduce effort (G2.5) 

• reduce musculoskeletal disorders (G3.5) 

• reduce stress and mental health disorders (G3.6) 

• ensure ergonomic workstation (G5.1). 

The study involves the collection of data directly on the person, for this reason an 
agreement was shared with the workers who participated voluntarily. This is very 
important to obtain reliable data: the operator should accept the evaluation positively. In 
fact, if the evaluation is not fully shared, the data cannot be classified as valid. 

At this point a parameters selection was carried out choosing through the goals and 
variables matrix (Figure 2). The variables matching included all the parameters excluding 
only some of them: 
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• noise (V12.2) 

• smell (V12.5) 

• agent exposure (V12.6). 

The rest of the variables should be considered to achieve the goals proposed. To be 
noticed, it is that some of the parameter variables were in common in some goals, thus, 
the sensors selection consisted in a sum of those variables to be monitored through the 
same wearable devices: 

• chest band to record vital parameters such as heart rate, breath rate, and back posture 
and body motions (vector magnitude units data, VMU) 

• glasses with electrooculogram sensors to monitor eye movements such as blinks and 
fixations. 

Data from the wearable sensors were analysed with specific algorithms in relation with 
anthropometric measures and specific operator characteristics (variables in Table 2, V2). 

Environmental features such as temperature has been taken into account. 
The first test was performed in the morning shift. The pre-test started at 4.15 a.m. to 

set up the data acquisition devices. To visually monitor the operation, a camera was 
placed near the machine. The video recording allows seeing the operator in action both 
on the picking of the product and during the transport phase of the completed box. 

The operator has been named as OP. The operator monitored is specialised in 
packaging, is a woman, 1.60 m high, weights 80 kg and is 22 years old. 

The operator was asked to wear all the technological sensors necessary for data 
acquisition. After the installation of the smart band, the subject was instructed to wear the 
glasses with sensors. 

At 5 a.m. the shift began, and data acquisition was started. During the campaign, the 
observation was done in a safe area where there was no obstruction with the work 
operations. All the devices were connected. 

The operations sequence was repeated for the whole duration of the shift. After for 
hours there is a break time of 20 min. 

The test lasted for 5 h, to cover most of the working activities including the break. 
The operator was monitored even during the break, to understand differences in mental 
load and vital signs. At the end of the test, the sensors were switched off and removed by 
the operator. The operator reported that devices did not affect her job. 

The second test was performed in the afternoon shift and it had the same duration as 
the first test. This second test deserved to identify a difference in performances in 
different daytime. 

4 Results 

By returning to the goals indicated previously, the results are presented after data 
elaboration. In fact, for each specific sensor adopted, raw data were extracted and 
processed with algorithms that normalised data among workers on the basis of the 
baseline, classifying the type of physical workload and cognitive activity, for the given 
packaging task. 



   

 

   

   
 

   

   

 

   

   250 A. Papetti et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.1 Physical workload 

The thoracic smart band was used to evaluate the physical workload by measuring 
different variables (e.g., heart rate, breath rate, trunk bending); they can be divided into 
two main categories: assessment of back posture, and intensity of the activity performed. 

Data analysis concerning back posture during the morning shift displayed a frequency 
of bending for less than 20° (acceptable condition) for the majority of time (almost 95% 
of the activity duration), as well as the afternoon shift. Comparing the two shifts, a slight 
difference between the warning conditions and the critical ones (Table 6). The reason of 
such a difference is in the different storage in the two shift; indeed, in the afternoon shift 
the storage at the line-side required pallets with less boxes stacked, so the implement 
made more bending of the back towards the base of the pallet. Lifting and carrying 
analysis were equal for both shifts because the operator managed the same number of 
boxes (No. 20), in the same range of weight (from 10 kg to 15 kg), walking roughly the 
same distances (4 meters, from the box stand to the boxes stock). However, the NIOSH 
Variable Lifting Index was higher, due to the awkward posture to stock the boxes on the 
lowest ledge (Table 7). 

Table 6 Back posture assessment (according to ISO 11226) (see online version for colours) 

Back posture Morning shift (%) Afternoon shift (%) 
Bend ≤ 20° 94.9 95.91 
20° < Bend ≤ 60° 5.0 3.89 
Bend > 60° 0.06 0.20 

Table 7 Manual lifting and carrying assessment (according to ISO 11228-1) 

NIOSH variable lifting index Synthetic risk index (carrying) 
1.55  0.77 

Figures 4 and 5 show data recording about the physical effort based on heart rate signal. 
Performing the same tasks, reactions are different during the day. To understand if any 
dependency occurs, HR data for the two shifts on are compared in terms of the operator 
vital signals response. The graphs compare the heart rate classified in the different 
categories of physical intensity (Norton et al., 2010). It is to note that in the morning shift 
there is a medium HR of 95 BPM, in the afternoon shift, the medium HR is 104 BPM. 
The activity difference was also confirmed by the Vector Magnitude Units data (VMU) 
used to indicate activity level expressed in ‘g’ – units of gravity, 9.81 m/s2: 

• 0.2 g – roughly equivalent to a walking level of activity 

• 0.8 g – roughly equivalent to a running level of activity. 

In the cases analysed it was found that an average of 0.13 g for the morning shift and 
0.15 g for the afternoon shift. It is to note that the medium temperature for the period was 
of 27.8°C during morning shift and 30.3°C in the afternoon shift. Temperature was 
affected by outside conditions (Italy, summer season). Then, the little difference in terms 
of heart rate would be explained by the temperature difference as confirmed by Davies 
and Maconochie (2009). 
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Figure 4 Operator HR-activity classification data in the morning (see online version for colours) 

 

Figure 5 Operator HR-activity classification data in the afternoon (see online version for colours) 

 

However, there is another impacting variable on the physiological human response: the 
product. In fact, during the two shifts there were different soles to manage. Weight and 
shape of soles affected the performance of the operator. Bigger soles (e.g., with hells) are 
more difficult to pick and verify in respect of thinner ones. After the data correlation,  
it was asked the operator if she noted the difference in terms of performance from the two 
shifts and she confirmed a (slight) difference in terms of activity. The morning shift 
defines the same productivity of the afternoon shift. Temperature and products should be 
mitigated in order to reach best performances. 
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4.2 Cognitive load 

Data obtained from the smart glasses to monitor the electrooculogram signal returned 
some issues to explore. Considering the relation between blinks and mental workload, the 
evidence is that after 1 h and a half there is a consistent change in terms of cognitive 
workload according to data from the smart glasses. In fact, after 1 h and a half there are 
continuous peaks, meaning blinks in the EOG graph. Figures 6 and 7 represent EOG 
values for 15 s of measurement before and after 1 h and a half. After the latter period, 
there is a reduction in concentration levels, according to the number and intensity of 
blinks. Moreover, after 1 h and a half it is quite difficult to identify clearly peaks 
according to Figure 7 then it is very complex to correctly associate peaks to operation 
then understand related impact. This is a first result of the assessment: after 1 h and a 
half, the operator is less concentrated. Even after the 20-min pause (after four working 
hours) the EOG trend was not affected. This means that with an organisational redesign 
of the area, pause should be rescheduled after 1.5 h from the shift start. 

Figure 6 Electrooculography before 1 hour and a half (see online version for colours) 

 

Figure 7 Electrooculography after 1 hour and a half (see online version for colours) 

 

Another interesting issue that presents an increase in mental concentration is the 
application of PET foils. The operation consists in picking the foils, separate if attached, 
and lay on between the sole layers in the box. The foils separation has been classified as a 
high mental demand due to the task precision required. To understand the tasks workload 
the NASA TLX (Hart and Staveland, 1988) has been submitted to the operator. The tasks 
considered are the ‘counting and soles picking’ and the “boxes transportation and 
storage”. The answers given for the different areas of the questionnaire calculated 
concerning the method gave different ratings. The ‘counting and soles picking’ task, 
which included the foils separation, gave a rating of 51. The highest demand referred to 
temporal demand due to machinery pace which impacts also on mental demand.  
The ‘boxes transportation and storage’ temporal demand gave the same high rating as the 
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task above, with the performance and effort demands. The total rating to the second task 
was of 54. Both tasks did not detect the burden of frustration, unlike a slight presence of 
the required performance. 

5 Discussion and conclusions 

This study stems from the identification of the need to bring an update of the ergonomic 
analysis, going beyond the analogue tools used to assess the working conditions in 
production processes. The work presented focused on describing how a theoretical model 
can be used for the analysis of human posture and fatigue, i.e., NIOSH and the Norton’s 
study, can be integrated with technological devices and IoT algorithms to specify,  
analyse and support the assessment of working conditions, associated with specific 
variables. The integration of all the variables as in the model reported, proposes a global 
analysis of human work, but at the same time it can be evaluated individually and 
intervene on the specific variable. The classification of the ‘goal’ variables is important to 
ensure a satisfactory job both from the point of view of performance and from the 
ergonomic, physical and psychological point of view of the worker. These indicators are 
influenced by several variables that characterise the work environment. The search for 
the individual variables is supported both by the legislation that protects the occupational 
safety and health of workers and by the scientific studies mentioned above that support 
the relationship between them. Not considering these objectives means not completely 
considering the working context. The study presented a methodology for promoting 
social sustainability in an intelligent factory and reported a case study in which the 
proposed method was applied within an SME. IoT devices were used to collect data on 
workers’ characteristics, work environment and work development. During the case 
study, the interpolation between the recorded social sustainability data and the workers’ 
information suggests the importance of a structured data management and an adequate 
data acquisition system. The comparison with previous risk assessment based on 
traditional employee interviews highlighted the two main benefits of the proposed 
approach: a more objective analysis, that is independent from the users’ skills and habits, 
and a wider set of data collected, and available for further improvements. In particular, 
the proposed objective measurements provided a potentially accurate and optimised 
estimate of the impact of the human factor on work. Through the proposed algorithms, 
variables that influence human behaviour are integrated in different ways, at the same 
time, and single parameter can be modified according to variable working conditions.  
As a result, the optimisation of human work improved the quality of working conditions 
and the efficiency of the production system, and thus the achievement of selected goals. 
As a consequence, if the company and the worker do not share the values, the analysis is 
useless because of an intrinsic manipulation of the data. In fact, if a worker assumes that 
the analysis is aimed at controlling him and his efficiency, he must have a behaviour, 
whether he accepts the test, which compromises the results. In this context, worker 
motivation was also crucial: the workers must understand the opportunity and benefits of 
the proposed approach to push for social sustainability. Only with this premises, the 
analysis allows to identify the critical points for the operator. These were inefficiencies 
and costs for the company. 

On the other hand, the study has few limits. The main limit is certainly due to the size 
of the sample, which is not statistically significant. Increasing the sample size and 
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analysis times will be done to support the proposed methodology more effectively.  
In addition, future work will focus on defining a set of rules that support the selection of 
the most appropriate corrective actions, assessing their effectiveness in mitigating the 
identified risk, simulating their implementation to verify the generation of new risks and 
quantify their benefits based on the different domains of KPIs. 
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