Rotor vibration control of hybrid pole bearingless switched reluctance motor with C-dump converter
by Polamraju V.S. Sobhan; G.V. Nagesh Kumar; P.V. Ramana Rao
International Journal of Power Electronics (IJPELEC), Vol. 12, No. 2, 2020

Abstract: Rotor vibration control during start up, acceleration and deceleration phases is one of the key problems besides stable levitation, in high-speed applications of bearingless switched reluctance motor (BSRM). In this paper, an effective intelligent sliding mode controller is proposed for suppressing the rotor vibration due to residual unbalance and external disturbance during levitation and motoring phases. The parameters of time-varying sliding surface for avoiding high control gains and chattering are adjusted integrating the sliding mode control (SMC) and features of fuzzy logic control. The experimental studies conducted on a prototype BSRM system confirm that the application of fuzzy SMC guarantees the robust performance with less chattering under model uncertainties and unknown external disturbances compared to classical sliding mode controller.

Online publication date: Wed, 05-Aug-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Power Electronics (IJPELEC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com