The integral-differential and integral approach for the estimation of the classical Lennard-Jones and Biswas-Hamann potentials
by Samuel A. Surulere; Micheal Y. Shatalov; Andrew C. Mkolesia; Julius O. Ehigie
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), Vol. 10, No. 3, 2020

Abstract: Many well-known semiempirical potential energy functions have been used to construct potential energy curves from the physical or chemical properties of atoms. In this study, we identify the Lennard-Jones and Biswas-Hamann potential parameters and use these to calculate and reconstruct potential energy curves using experimental datasets of gold atom. Two different approaches are studied in detail. The Lennard-Jones potential yielded complex conjugate eigenvalues for both approaches. Numerical estimates proved the considered approaches gives better approximations as constructed and reconstructed potential energy curves were almost graphically indistinguishable.

Online publication date: Tue, 21-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com