A comparative study of integral order and fractional order models for estimating state-of-charge of lithium-ion battery
by Yifan Zhang; Tao Sun; Yuejiu Zheng; Xin Lai
International Journal of Powertrains (IJPT), Vol. 9, No. 1/2, 2020

Abstract: Battery state estimation is a key technology for battery management systems for electric vehicles, and state-of-charge (SOC) estimation of battery is the basis for numerous state estimations. In this paper, five fractional order equivalent circuit models are compared and evaluated based on a LiNMC cell. First of all, the particle swarm optimisation (PSO) is used to identify the parameters of the fractional order models, and the fractional Kalman filter algorithm is further adopted to estimate the SOC and compared with the SOC estimation obtained by the integral order models. The results indicate that the fractional battery model has higher accuracy, especially in the low SOC interval. Through comparative analysis of several fractional order models, it is found that the fractional order model with the Warburg component can be better describe the battery characteristics in the low SOC interval. From the perspective of model accuracy and computational cost, the addition of the Warburg element to the fractional second-order RC model is the best choice.

Online publication date: Mon, 13-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com