FEM assessment of the effects of machining parameters in vibration assisted nano impact machining of silicon by loose abrasives
by Nick H. Duong; Jianfeng Ma; Shuting Lei
International Journal of Manufacturing Research (IJMR), Vol. 15, No. 3, 2020

Abstract: In this paper, the commercial FEM software package ABAQUS 6.14/EXPLICIT is used to model a vibration assisted nano impact machining process by loose abrasives (VANILA), in which an atomic force microscope (AFM) is used as a platform and the nanoabrasives (diamond particles) injected in slurry between the workpiece (silicon) and the vibrating AFM probe impact the workpiece and result in nanoscale material removal. The FEM model is validated first and then is used to investigate the influence of impact speed, impact angle, and the frictional coefficient between the workpiece and abrasives on the nanocavity's size and depth. It is concluded that the impact speed, impact angle, and frictional coefficient between the silicon workpiece and nanoabrasives have substantial influence on the nanocavity's size and depth, the optimal size of which along with material removal rate might be achieved by simultaneously considering impact speed, impact angle, and frictional coefficient. [Submitted 20 March 2018; Accepted 23 December 2018]

Online publication date: Mon, 06-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com