Study on the influence of spindle vibration on the surface roughness of ultra-precision fly cutting
by Jianpu Xi; Bin Li; Dongxu Ren; Zexiang Zhao; Huiying Zhao
International Journal of Nanomanufacturing (IJNM), Vol. 16, No. 3, 2020

Abstract: Spindle vibration is a key factor influencing the quality of the processed surfaces during ultra-precision fly cutting. An extremely tiny vibration will directly influence the quality of the surface at the nanoscale. Therefore, in this study, a mathematical model of aerostatic spindle vibration under pulsed excitation was established by analysing the characteristic cutting path of a fly cutter head and the state of the spindle under interrupted cutting force and then, the axial and radial of the aerostatic spindle to pulses during periodically interrupted fly cutting were calculated using a Fourier series. Under the periodic processing mode of high-speed fly cutting, a simulation and experimental analysis on the spindle vibration were conducted. The experimental results show that the cutting force and spindle speed are major factors influencing surface roughness. According to the simulation and experimental analysis, reliable theoretical guidance is provided for the improvement and prediction of surface quality of an ultra-precision fly cutting.

Online publication date: Thu, 02-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com