Effects of computer networks' viruses under the of removable devices Online publication date: Mon, 22-Jun-2020
by Ashraf Ahmad; Yousef Abu-Hour; Mahmoud H. DarAssi
International Journal of Dynamical Systems and Differential Equations (IJDSDE), Vol. 10, No. 3, 2020
Abstract: The removable devices (RD) is one of the important factors that affects the virus spreading. We assumed that the infected RD could affect the nodes of S and E compartments at the rates, θ1 and θ2, respectively. While the previous studies considered this effect on susceptible compartment only. Moreover, we considered the effect of the rate of the nodes which are break down from network because of infected RD, μ1. This model has no virus-free equilibrium and has a unique endemic equilibrium. The theorems of asymptotically autonomous systems and the generalised Poincare-Bendixson are used to show that the endemic equilibrium is globally asymptotically stable. Numerical methods are used to solve the obtained system of differential equations and the solutions are illustrated in several examples. The effects of ξ, ϵ, θ1 and θ2 rates on the devices that moved from latent to recovered nodes are investigated.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Dynamical Systems and Differential Equations (IJDSDE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com