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1 Introduction

Many optimisation problems are very complex and NP-hard that need a lot of
computational efforts to solve them. Conventional optimisation algorithms are often
trapped in local optima when the problem search space increases. Compared to
conventional optimisation algorithms, meta-heuristic algorithms have superior abilities
in avoiding local optima. The stochastic nature of meta-heuristics algorithms helps them
to search the whole search space and bypass stagnation in local solutions especially in
real problems which are very complex with multiple local optima (Nesmachnow, 2014;
Xu, 2013; Mirjalili and Lewis, 2014).

Currently, it has been observed that meta-heuristic optimisation algorithms which
are inspired from nature have achieved a lot of attention in scientific engineering due
to their flexibility, simplicity, robustness, and efficiency. They mimic various natural
phenomena such as social behaviour of birds (Kennedy, 1995) behaviour of bats (Yang,
2010), pheromone of ants (Socha and Dorigo, 2008), behaviour of fire flies (Yang, 2013)
and behaviour of wolves (Mirjalili and Lewis, 2014).

Mirjalili and Lewis (2016) presented a novel meta-heuristic optimisation algorithm,
which mimics the hunting behaviour of humpback whale. Based on nature of humpback
whale, they proposed whale optimisation algorithm (WOA). The results proved that
WOA was very competitive with other meta-heuristic optimisation algorithms. Oliva
et al. (2016) used improved chaotic WOA to detect the best configuration to the
parameters of photovoltaic cells. Touma (2016) utilised WOA to find the optimal
solution for the economic dispatch problem and tested the algorithm on system of
IEEE 30- Bus. Prakash and Lakshminarayana (2016) used WOA to determine the
optimal sizing and siting of capacitors in distribution network system. Ladumor et al.
(2016) used WOA to solve the problem of unit commitment. Kaveh and Ghazaan
(2016) applied an enhanced WOA for sizing optimisation problems of frame and truss
structures. Mafarja and Mirjalili (2017) utilised hybrid WOA with simulated annealing
to select the most informative features for classification task. Nasiri and Khiyabani
(2018) used WOA algorithm for clustering. Hassan and Hassanien (2018) used WOA
to extract the vasculature of retinal fundus images. Abdel-Basset et al. (2019) utilised
modified WOA for solving single and multi-dimensional 0–1 knapsack problems. Bui
et al. (2019) used WOA to select the optimal features and adjusting parameters of the
adaptive neuro-fuzzy inference system for land-cover classification. Yousri et al. (2019)
introduced four different variants of chaotic WOA and tested on CEC 2017 benchmark
functions.

Standard WOA is easily trapped in local optima, provide slow convergence rate
and lack of diversity, as the dimension of the search space expansion (Sun et al.,
2019). In this paper, modified whale optimisation algorithm (MWOA) is proposed to
improve the quality of standard WOA algorithm performance. In MWOA, the spiral
movement of humpback whales is done based on archimedes’ spiral to mimic the
spiral position update of the humpback whales. Moreover, ALMWOA algorithm is
presented in this paper to improve the local search capability of MWOA by increasing
the diversity of search space. ALMWOA is based on the incorporation of MWOA and
Laplace crossover. The proposed MWOA and ALMWOA algorithms are tested on a set
of 23 benchmark functions (unimodal optimisation functions, multimodal optimisation
functions and fixed-dimension multimodal optimisation functions). Experimental results
demonstrate that the proposed algorithms are effective and have superior capabilities in
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most of benchmark functions.
The remainder of this paper is organised as follows: brief introduction of WOA

and Laplace crossover are presented, respectively, in Sections 2 and 3. Section 4
describes in details the proposed MWOA and ALMWOA algorithms. Section 5 provides
experimental results and analysis. At last, conclusions are discussed in Section 6.

2 Whale optimisation algorithm

WOA (Mirjalili and Lewis, 2016) is a new meta-heuristic optimisation algorithm which
can be applied for solving optimisation problems. The algorithm simulates the hunting
behaviour of humpback whales in searching and attacking preys (fish herds). WOA is
inspired from the bubble-net hunting strategy of humpback whales, in which the whales
dive approximately 12 metres down and start generating bubbles in a spiral shape around
the fish herds. As shown in Figure 1, this strategy directs the fish herds towards the
surface. Humpback whales attack the fish herds when they very close to the surface
of the water. The mathematical modelling of hunting behaviour of humpback whales
involves three various phases: encircling the prey phase, exploitation phase (bubble-net
attacking) and exploration phase (searching for the prey).

Figure 1 Bubble-net attacking strategy of humpback whales

2.1 Encircling the prey phase

In this phase, humpback whales can notice the locations of the prey (fish herds), then
they encircle them. In this algorithm, the current best position is the location of target
prey that is closest to the perfect answer. After that, the best hunting agent (search
agent) will be defined, and the rest of the candidate solutions (the other whales) will try
to update their positions with reference to the location of the best hunting agent. The
whole process is mathematically formulated as follows:

D⃗ =
∣∣∣C⃗ · X⃗∗(tcur)− X⃗(tcur)

∣∣∣ (1)
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X⃗(tcur + 1) = X⃗∗(tcur)− A⃗ · D⃗ (2)

where tcur implies the current iteration, A⃗ and C⃗ are coefficient vectors, X⃗∗ denotes the
position vector of the best or fittest solution acquired until this phase, X⃗ is the current
position vector, | | denotes the absolute value and · is a pairwise multiplication between
two vectors. During every iteration, X⃗∗ should be updated if there is a better solution.
The values of A⃗ and C⃗ coefficient vectors are computed as follows:

A⃗ = 2a⃗u · r⃗1 − a⃗u (3)

C⃗ = 2 · r⃗1 (4)

where a⃗u is search direction matrix linearly decreased from 2 to 0, over the algorithm
iterations and r⃗1 is a random vector value in the range [–1, 1].

2.2 Exploitation phase (bubble-net attacking)

The following two mechanisms are designed to mathematically model the exploitation
phase (bubble-net attacking):

1 Shrinking encircling mechanism: This behaviour is accomplished by decreasing
the value of a⃗u from 2 to 0 linearly via equation (3), over the algorithm iterations
making A⃗ to have a random numbers in the range [–1, 1]. The new position of
search agent can be defined any location from the initial position of the agent to
the position of the current best agent.

2 Spiral updating mechanism: To formulate this behaviour, this mechanism
calculates the distance between the current humpback whale position and the prey.
Then, to mimic helix-shaped movement of humpback whales, a spiral equation is
created between its current position and prey position as is given below:

X⃗ ′(tcur + 1) = D⃗′ · eb·r2 · cos(2πr2) + X⃗∗(tcur) (5)

Here,

D⃗′ =
∣∣∣X⃗∗(tcur)− X⃗(tcur)

∣∣∣ (6)

where D⃗′ is the distance from the current whale to the prey, b represents a constant
parameter for defining the spiral movement shape by the whales, r2 is a random value
in the range [–1, 1] and · is a pairwise multiplication between two vectors. During
optimisation process, it is noticed that the Humpback whales swim within shrinking
encircling mechanism around the prey and following a spiral path toward the prey
concurrently. For simplicity, to update the position of whales, the probability of 50% is
assumed to choose between the shrinking encircling and the spiral updating mechanism.
The mathematical model of these mechanisms can be expressed as follows:

Every whale may choose between spiral and shrinking position updates

X⃗(tcur + 1) =

{
X⃗∗(tcur)− A⃗ · D⃗ if Nr < 0.5

D⃗′ · eb·r2 · cos(2πr2) + X⃗∗(tcur) if Nr ≥ 0.5
(7)

where Nr is a random number in the range [0, 1].
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2.3 Exploration phase (searching for the prey)

This exploration phase (searching for the prey) is done based on the variation of vector
A⃗ like the exploitation phase. In exploration phase, the value of vector A⃗ is greater than
1 or less than –1 to emphasise the search agents to swim far away from a reference
whale. | A⃗ | > 1 is used to force exploration in the WOA algorithm to make global
search and bypass stagnation in local solutions. Exploration phase is distinct from
exploitation phase in that the agent position in exploration phase is updated according
to a randomly chosen agent instead of the best agent that has been computed so far.
This phase is mathematically formulated as follows

D⃗ =
∣∣∣C⃗ · X⃗rand(tcur)− X⃗(tcur)

∣∣∣ (8)

X⃗(tcur + 1) = X⃗rand(tcur)− A⃗ · D⃗ (9)

where X⃗rand is a random position vector selected from the current generation.

3 Laplace crossover

Deep and Thakur (2007) introduced a new crossover operator based on Laplace
distribution. This operator is a parent centric real coded crossover which is known
as Laplace crossover (LX). It generates two off-springs y1 = (y11, y12, ..., y1n) and
y2 = (y21, y22, ..., y2n) from two parents x1 = (x11, x12, ..., x1n) and x2 = (x21, x22,
..., x2n). LX creates a distributed random number Qi based on Laplace distribution
according to the following equation:

Qi =

{
l − kloge(si) si ≤ 0.5
l + kloge(si) si > 0.5

(10)

where si is a uniformly distributed random number in the range [0, 1], l ∈ R represents
the location parameter and k > 0 is called the scale parameter. The offsprings are created
according to the following equations:

y1i = x1i +Qi | x1i − x2i | (11)

y2i = x2i +Qi | x1i − x2i | (12)

Assume that xmin i and xmax i are minimum and maximum bounds of xi. If the value
of xi is less than xmin i or greater than xmax i, then xi will be a random value in the
range [xmin i, xmax i]. When k is a large value, LX produces the offspring distant from the
parents. However when k is a small value, it produces the offspring close to the parents.
LX circulates offsprings depending on the spread of parents if l and k are constant
values.
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4 The proposed algorithms

In this section, two modified WOA algorithms are proposed. MWOA is proposed to
enhance convergence rate of standard WOA algorithm and avoid being stuck at local
optimal solutions while ALMWOA algorithm is proposed to increase the diversity of
search space and enhance the capability to avoid local optimal solutions. The details of
the proposed algorithms will be described as follows.

4.1 Modified whale optimisation algorithm

In standard WOA algorithm, a spiral equation between the positions of humpback
whale and target prey is created to mimic the helix-shaped movement according to
equation (5). The humpback whales move with a logarithmic spiral function to attack the
prey and cover the border area in the search space. WOA algorithm suffers from falling
into local optima, especially for solving the high dimension optimisation problems.

The core of our proposed algorithm (MWOA) aims to employ archimedes’ spiral and
variation of vector A⃗ to mimic the spiral position update of the humpback whales over
the algorithm iterations. Archimedes’ spiral is a kind of an archimedean (arithmetic)
spiral. It is expressed by polar equation in the form r = aθ in which r and θ are the
length of the radius from the origin of the spiral and the polar angle (the angular position
of the radius), respectively, and a is a constant. In archimedes’ spiral, the distance
between successive turnings is constant due to the linear relation between radius and
the angle as shown in Figure 2.

Figure 2 Archimedes’ spiral in polar coordinate system (see online version for colours)

The main difference between archimedean spiral and logarithmic spiral is that
archimedean spiral has a beginning from the origin of the spiral, while the logarithmic
tends towards the origin. Thus in MWOA algorithm, the humpback whales move with
archimedes’ spiral function to attack the target prey by the following equation:

X⃗ ′(tcur + 1) = D⃗′ · b · r2 · cos(2πr2) + A⃗ · X⃗∗(tcur) (13)

The main steps of MWOA are depicted in Algorithm 1.
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Algorithm 1 Pseudo code of MWOA algorithm

Ugv pwodgt qh yjcngu ? N

Ugv oczkowo pwodgt qh kvgtcvkqpu ? Max Iter

Kpkvkcnkug vjg yjcngu rqrwncvkqp Xi *i ? 3. 4. 000. N +
Kpkvkcnkug A. C cpf r2

Gxcnwcvg vjg hkvpguu hwpevkqp qh gcej yjcng
Ugv X∗ = vjg rqukvkqp qh dguv yjcng dcugf qp hkvpguu hwpevkqp
Ugv tcur ? 2
yjkng tcur < Max Iter fq
hqt i = 1 vq N fq
Wrfcvg A. C cpf r2

Igpgtcvg tcpfqon{ Nr ∈ ]2. 3_
kh *Nr > 207+ vjgp
kh | A |< 1 vjgp

�D =
∣

∣

∣

�C · �X∗(tcur)− �X(tcur)
∣

∣

∣

�X(tcur + 1) = �X∗(tcur)− �A · �D
gnug kh | A |≥ 1 vjgp

�D =
∣

∣

∣

�C · �Xrand(tcur)− �X(tcur)
∣

∣

∣

�X(tcur + 1) = �Xrand(tcur)− �A · �D
gpf kh

gnug kh *Nr ≥ 207+ vjgp
�D′ =

∣

∣

∣

�X∗(tcur)− �X(tcur)
∣

∣

∣

�X ′(tcur + 1) = �D′ · b · r2 · equ(2πr2) + �A · �X∗(tcur)
gpf kh

gpf hqt
Gxcnwcvg vjg hkvpguu hwpevkqp qh cnn yjcngu
Wrfcvg vjg xcnwg qh X∗ dcugf qp hkvpguu hwpevkqp
tcur = tcur + 1

gpf yjkng
Tgvwtp vjg dguv uqnwvkqp X∗

4.2 ALMWOA algorithm

To enhance MWOA performance, an adaptive optimisation algorithm based on MWOA
and Laplace crossover is proposed.

In the ALMWOA algorithm, MWOA has been incorporated with Laplace crossover.
At each iteration, ALMWOA algorithm simulates the MWOA first, then Laplace
crossover is applied to two search agents (whales). The first agent is the current best
whale while the second agent is chosen randomly from the current population. Laplace
crossover generates two off-springs according to equations (11) and (12) respectively
and the fitness function (F ) of them are compared with fitness function of the current
worst whale one by one. If the fitness function of any one of two off-springs is
better than the fitness function of the current worst whale, then the current worst
whale is substituted by better off-spring. The fitness function of two off-springs are
also compared with fitness function of the current best whale one by one. If the
fitness function of any one of two off-springs is better than the fitness function of
the current best whale, then the current best whale is substituted by better off-spring.
This procedure is repeated until the termination criterion for iterations in ALMWOA
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algorithm is satisfied according to whether the maximum number of iterations or
minimum fitness function error is reached. The main steps of ALMWOA algorithm are
shown in Algorithm 2.

Algorithm 2 Pseudo code of ALMWOA algorithm

Ugv pwodgt qh yjcngu ? N

Ugv oczkowo pwodgt qh kvgtcvkqpu ? Max Iter

Kpkvkcnkug vjg yjcngu rqrwncvkqp Xi *i ? 3. 4. 000. N +
Kpkvkcnkug A. C cpf r2
Gxcnwcvg vjg hkvpguu hwpevkqp qh gcej yjcng
Ugv X∗ = vjg rqukvkqp qh dguv yjcng dcugf qp hkvpguu hwpevkqp
Ugv tcur ? 2
yjkng tcur < Max Iter fq
hqt i = 1 vq N fq
Wrfcvg A. C cpf r2
Igpgtcvg tcpfqon{ Nr ∈ ]2. 3_
kh (Nr < 0.5) vjgp
kh | A |< 1 vjgp

�D =
∣

∣

∣

�C · �X∗(tcur)− �X(tcur)
∣

∣

∣

�X(tcur + 1) = �X∗(tcur)− �A · �D
gnug kh | A |≥ 1 vjgp

�D =
∣

∣

∣

�C · �Xrand(tcur)− �X(tcur)
∣

∣

∣

�X(tcur + 1) = �Xrand(tcur)− �A · �D
gpf kh

gnug kh *Nr ≥ 207+ vjgp
�D′ =

∣

∣

∣

�X∗(tcur)− �X(tcur)
∣

∣

∣

�X ′(tcur + 1) = �D′ · b · r2 · equ(2πr2) + �A · �X∗(tcur)
gpf kh

gpf hqt
Gxcnwcvg vjg hkvpguu hwpevkqp qh cnn yjcngu
Wrfcvg vjg xcnwg qh X∗ dcugf qp hkvpguu hwpevkqp
Ugv x1 = X∗ cpf x2 = tcpfqo ugctej cigpv *yjcng+
Crrn{ ncrnceg etquuqxgt
Igpgtcvg vyq qhh urtkpiu y1 cpf y2
Ugv Xw vjg rqukvkqp qh yqtuv yjcng dcugf qp hkvpguu hwpevkqp
kh H*y1+ dgvvgt vjcp H*Xw+ vjgp

Xw = y1
gnug kh H*y2+ dgvvgt vjcp H*Xw+ vjgp

Xw = y2
gpf kh
kh H*y1+ dgvvgt vjcp H*X∗+ vjgp

X∗ = y1
gpf kh
kh H*y2+ dgvvgt vjcp H*X∗+ vjgp

X∗ = y2
gpf kh
tcur = tcur + 1

gpf yjkng
Tgvwtp vjg dguv uqnwvkqp X∗
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5 Experimental results and analysis

To verify the performance of MWOA and ALMWOA algorithms, 23 benchmark
functions are used. The benchmark functions are divided into three types: unimodal
optimisation functions (Table 1), multimodal optimisation functions (Table 2), and
fixed-dimension multimodal optimisation functions (Table 3). Where Dim represents the
dimension of variables, Range denotes the boundary of the function’s search space, and
Fmin is the optimum of the functions. Figure 3 illustrates the typical 2D plots of the
benchmark functions for F1, F5, F16 and F23 test cases used in this paper.

Table 1 Description of unimodal optimisation functions

Name Function Dim Range Fmin

Sphere F1(x) =
∑n

i=1 x
2
i 30 [–100, 100] 0

Schwefel 2.22 F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [–10, 10] 0
Schwefel 1.2 F3(x) =

∑n
i=1(

∑i
j−1 xj)

2 30 [–100, 100] 0
Schwefel 2.21 F4(x) = maxi{|xi|, 1 ≤ i ≤n} 30 [–100, 100] 0
Rosenbrock F5(x) =

∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [–30, 30] 0

Step F6(x) =
∑n

i=1([xi + 0.5])2 30 [–100, 100] 0
Noise F7(x) =

∑n
i=1 ix

4
i + random[0, 1) 30 [–1.28, 1.28] 0

Table 2 Description of multimodal optimisation functions

Name Function Dim Range Fmin

Schwefel 2.26 F8(x) =
∑n

i=1 −xi sin(
√

|xi|) 30 [–500, 500] –418.9829 × 5
Rastrigin F9(x) =

∑n
i=1[x

2
i − 10 cos(2πxi) + 10] 30 [–5.12, 5.12] 0

Ackley F10(x) = −− 20 exp(−0.2
√

1
n

∑n
i=1 x

2
i 30 [–32, 32] 0

− exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e

Griewank F11(x) =
1

4,000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 30 [–600, 600] 0

Penalise 1 F12(x) =
π
n
{10 sin(πy1) 30 [–50, 50] 0

+
∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)]

+(yn − 1)2}+
∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k,m)

=


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

Penalise 2 F13(x) = 0.1{sin2(3πx1) 30 [–50, 50] 0
+
∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]}
+
∑n

i=1 u(xi, 5, 100, 4)

The experiments are performed on a computer with 2.40 GHZ frequency, Intel(R)
Core(TM) i7-5500U central processing unit (CPU) and 16 GB random-access memory
(RAM) using written codes in MATLAB R2015a. In these experiments, the MWOA and
ALMWOA algorithms are run thirty independent times for each benchmark function
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with population size of the whales N = 30 and maximum number of iterations
Max Iter = 500. The location parameter of Laplace crossover is l = 0 and the
scale parameter of Laplace crossover is k = 0.1 (after extensive experimentation, these
parameters are fine tuned).

Table 3 Description of fixed-dimension multimodal optimisation functions

Name Function Dim Range Fmin

De Jong F14(x) = ( 1
500

+
∑25

j=1
1

j+
∑2

i=1(xi−aij)6
)−1 2 [–65, 65] 1

Kowalik F15(x) =
∑11

i=1[ai − xi(b
2
i+bix2)

b2i+bix3+x4
]2 4 [–5, 5] 0.00030

Camel F16(x) = 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 2 [–5, 5] –1.0316

Back-6 Hump
Branin F17(x) = (x2 − 5.1

4π2 x
2
1 +

5
π
x1 − 6)2 2 [–5, 5] 0.398

+10(1− 1
8π

) cosx1 + 10

Goldstein-price F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 2 [–2, 2] 3
+3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x1 + 12x2

1

+48x2 − 36x1x2 + 27x2
2)]

Hartman 3 F19(x) = −
∑4

i=1 ci exp(−
∑3

j=1 aij(xj − pij)
2) 3 [1, 3] –3.86

Hartman 6 F20(x) = −
∑4

i=1 ci exp(−
∑6

j=1 aij(xj − pij)
2) 6 [0, 1] –3.32

Shekel 1 F21(x) = −
∑5

i=1[(X − ai)(X − ai)
T + ci]

−1 4 [0, 10] –10.1532
Shekel 2 F22(x) = −

∑7
i=1[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10] –10.4028

Shekel 3 F23(x) = −
∑10

i=1[(X − ai)(X − ai)
T + ci]

−1 4 [0, 10] –10.5363

Figure 3 Typical 2D representations of some benchmark functions (see online version
for colours)
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Table 4 Results of the p-value for t-test on benchmark functions at 0.05 level of significance
with 95% confidence interval

Function WOA vs. MWOA WOA vs. ALMWOA

F1 0.0443 0.0443
F2 0.0295 0.0295
F3 1.3315E-17 1.3315E-17
F4 2.0793E-09 2.0793E-09
F5 9.4436E-05 1.1717E-06
F6 1.0814E-04 1.1420E-04
F7 1.3376E-05 1.9491E-05
F8 9.3224E-08 1.6315E-07
F9 0.1608 0.1608
F10 4.1883E-10 4.1883E-10
F11 0.3256 0.3256
F12 1.5380E-07 0.0041
F13 2.0534E-11 0.0032
F14 0.0358 0.0115
F15 0.0237 0.0011
F16 4.0695e-04 0.0263
F17 0.0603 0.0336
F18 0.0281 0.0234
F19 0.0057 0.0158
F20 0.0041 0.0283
F21 0.0039 3.4917e-04
F22 7.0881E-07 1.4194E-08
F23 0.0480 9.9388E-04

For verifying the results of the proposed algorithms, MWOA and ALMWOA
are compared against standard WOA (Mirjalili and Lewis, 2016), particle swarm
optimisation (PSO) (Kennedy, 1995), gravitational search algorithm (GSA) (Rashedi
et al., 2009), and differential evolution (DE) (Storn and Price, 1997). The results of
the comparative algorithms are taken from Mirjalili and Lewis (2016) in terms of
AV and SD. Moreover, t-test performance of the proposed algorithms, MWOA and
ALMWOA are compared with WOA using a pairwise one tailed t-test at 0.05 level
of significance over the fitness values of all optimisation functions considered. t-test
should be performed to determine whether two samples from a normal distribution could
have the same mean or not (Sun et al., 2014). The null hypothesis is assumed that
the means of the two algorithms are equal at 0.05 level of significance and alternative
hypothesis is assumed that the means of the two algorithms are different. p-value is
the significance associated with t-test with varying levels of evidence: a p-value greater
than 0.1 implies ‘not significant’; a p-value less than 0.1 but greater than 0.05 yields
‘marginally significant’; a p-value less than or equal to 0.05 but greater than 0.01 yields
‘significant’; and a p-value less than 0.01 constitutes ‘highly significant’ (Filho et al.,
2013).

Table 4 shows the results of the p-value for t-test on benchmark functions at 0.05
level of significance with 95% confidence interval. The results of Table 4 show that if
WOA vs. MWOA is considered then 14 out of the 23 problems illustrate that MWOA
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is highly significant than WOA, 6 out of the 23 problems illustrate that MWOA is
significantly better than WOA, 1 out of the 23 problems illustrate that MWOA is
marginally significant than WOA and 2 out of the 23 problems illustrate that MWOA
is not significant. If WOA vs. ALMWOA is considered then 13 out of the 23 problems
show that ALMWOA is highly significant than WOA, 8 out of the 23 problems illustrate
that MWOA is significantly better than WOA and 2 out of the 23 problems illustrate
that ALMWOA is not significant.

The unimodal optimisation functions (F1 − F7) are suitable for examining the
exploitation and convergence of an optimisation algorithm since they have only one
global optimum. Figures 4–7 provide the anova test for the fitness values of WOA,
MWOA and ALMWOA for unimodal optimisation functions. According to Table 5 and
Figures 4–7, it is observed that the performance of MWOA and ALMWOA algorithms
is better than standard WOA for the majority of the test cases. In particular, MWOA
algorithm shows better performance than standard WOA in terms of average AV for
functions F1 − F4 and F6 − F7. For the seven functions on unimodal optimisation
functions, the standard deviation SD of MWOA algorithm is also less than standard
WOA, which proves that applying archimedes’ spiral to mimic the spiral updating
position can enhance convergence rate. Moreover, MWOA is the best efficient optimiser
for function F7 compared to standard WOA, ALMWOA, PSO, GSA and DE. Also
MWOA has the best SD for functions F1 and F3 similar to ALMWOA. While given
the second rank for functions F1, F2 and F3 in terms of AV among other comparative
algorithms. The results also indicate that ALMWOA has performance improvement over
WOA and MWOA in terms of AV for functions F1 − F7 and F1 − F6 respectively.
ALMWOA has better SD than WOA and MWOA for functions F1 − F7 and
F1 − F4 respectively. Table 5 indicates that ALMWOA is the best efficient optimiser for
functions F1, F2 and F3 compared to standard WOA, MWOA, PSO, GSA and DE and
the second rank for functions F4, F5 and F7 in terms of AV. The better performance of
ALMWOA is related to applying archimedes’ spiral with Laplace crossover. Hence, the
ALMWOA algorithm can provide very good exploitation and convergence behaviour.

Figure 4 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms for
F1 and F2 (see online version for colours)

Unlike unimodal optimisation functions, multimodal optimisation functions (F8 − F13)
possess a large number of local optima whose number increases exponentially as the
expansion of the problem size. Therefore, this kind of optimisation problems are suitable
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for examining the exploration ability of an optimisation algorithm. fixed-dimension
multimodal optimisation functions (F14 − F23) are similar to multimodal optimisation
functions, since they have more than one local optima but the main difference between
them is that they provide different search space compared to multimodal optimisation
functions.

Figure 5 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms for
F3 and F4 (see online version for colours)

Figure 6 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms for
F5 and F6 (see online version for colours)

Figure 7 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms for
F7 (see online version for colours)
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Table 5 Optimisation results obtained for unimodal optimisation functions

Fu
nc
tio

n
W
O
A

M
W
O
A

AL
M
W
O
A

PS
O

G
SA

D
E

AV
SD

AV
SD

AV
SD

AV
SD

AV
SD

AV
SD

F1
1.
41
E-
30

4.
91
E-
30

5.
54
06
E-
26
8

0
0

0
0.
00
01
36

0.
00
02
02

2.
53
E-
16

9.
67
E-
17

8.
2E
-1
4
5.
9E
-1
4

F2
1.
06
E-
21

2.
39
E-
21

2.
24
64
E-
13
9
7.
66
60
E-
13
9

1.
20
14
E-
20
0

0
0.
04
21
44

0.
04
54
21

0.
05
56
55

0.
19
40
74

1.
5E
-0
9
9.
9E
-1
0

F3
5.
39
E-
07

2.
93
E-
06

3.
12
91
E-
24
9

0
0

0
70
.1
25
62

22
.1
19
24

89
6.
53
47

31
8.
95
59

6.
8E
-1
1
7.
4E
-1
1

F4
0.
07
25
81

0.
39
74
7

8.
20
80
E-
13
9
3.
81
04
E-
13
8

6.
85
35
E-
19
0

0
1.
08
64
81

0.
31
70
39

7.
35
48
7

1.
74
14
52

0
0

F5
27
.8
65
58

0.
76
36
26

28
.4
45
4

0.
19
24

27
.4
97
8

0.
50
48

96
.7
18
32

60
.1
15
59

67
.5
43
09

62
.2
25
34

0
0

F6
3.
11
62
66

0.
53
24
29

0.
20
14

0.
06
91

0.
19
37

0.
14
51

0.
00
01
02

8.
28
E-
05

2.
5E
-1
6

1.
74
E-
16

0
0

F7
0.
00
14
25

0.
00
11
49

1.
22
71
E-
04

9.
27
69
E-
05

1.
48
30
E-
04

1.
38
00
E-
04

0.
12
28
54

0.
04
49
57

0.
08
94
41

0.
04
33
9

0.
00
46
3
0.
00
12
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Figure 8 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms for
F8 and F10 (see online version for colours)

Figure 9 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms for
F11 and F12 (see online version for colours)

Figure 10 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms
for F13 (see online version for colours)

Figures 8–10 show the anova test for the fitness values of WOA, MWOA and
ALMWOA for multimodal optimisation functions. From Table 6 and Figures 8–10,
it is obvious that the performance of MWOA and ALMWOA algorithms is better
than standard WOA, since MWOA algorithm has better AV and SD than standard
WOA for functions F8, F10 − F13. Also MWOA algorithm has the same results to
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WOA for function F9. Results show that MWOA is the best efficient optimiser for
functions F8 − F11 and given the second rank for functions F12 and F13 among other
comparative algorithms. The results in Table 6 also indicate that ALMWOA has the
best performance for function F10 and has the same results to WOA for function F9

and similar to MWOA for functions F9 and F11 which verify that both algorithms
MWOA and ALMWOA have superior abilities in avoiding local optima for multimodal
optimisation functions.

Figure 11 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms
for F14 and F15 (see online version for colours)

Figure 12 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms
for F16 and F17 (see online version for colours)

Figures 11–15 indicate the anova test for the fitness values of WOA, MWOA
and ALMWOA for fixed-dimension multimodal optimisation functions. Table 7 and
Figures 11–15 demonstrate the efficiency and superior of MWOA and ALMWOA
algorithms than standard WOA in most cases. MWOA algorithm has better AV and
SD than standard WOA for functions F14, F15 and F20 − F23 and has the same AV to
WOA for F16, F18 and F19. Moreover, MWOA is the best efficient optimiser (AV) for
functions F16 − F18 and has the second rank (AV) for function F14 and the second rank
(SD) for function F21 among all other algorithms. The results in Table 7 also show that
ALMWOA has the best performance for functions F18 − F20 and F23, the best AV for
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function F22 and the best SD for function F15. While ALMWOA has the second best
AV for functions F15 and F21 and the second best SD for function F22. This is due to
incorporated archimedes’ spiral with Laplace crossover for exploration in the standard
WOA algorithm that directs ALMWOA algorithm towards the global optimum. These
results demonstrate that both algorithms MWOA and ALMWOA are potentially able to
solve fixed-dimension multimodal optimisation functions.

Figure 13 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms
for F18 and F19 (see online version for colours)

Figure 14 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms
for F20 and F21 (see online version for colours)

Figure 15 ANOVA test for the fitness values of WOA, MWOA and ALMWOA algorithms
for F22 and F23 (see online version for colours)
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Table 6 Optimisation results obtained for multimodal optimisation functions

Fu
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tio

n
W
O
A

M
W
O
A

AL
M
W
O
A

PS
O

G
SA

D
E

AV
SD

AV
SD

AV
SD

AV
SD

AV
SD

AV
SD

F8
–5
,0
80
.7
6
69
5.
79
68

–1
2,
51
2

16
1.
62
43

–1
2,
32
8

55
6.
61
75

–4
,8
41
.2
9
1,
15
2.
81
4

–2
,8
21
.0
7
49
3.
03
75

–1
1,
08
0.
1

57
4.
7

F9
0

0
0

0
0

0
46
.7
04
23

11
.6
29
38

25
.9
68
41

7.
47
00
68

69
.2

38
.8

F1
0

7.
40
43

9.
89
75
72

8.
88
18
E-
16

0
8.
88
18
E-
16

0
0.
27
60
15

0.
50
90
1

0.
06
20
87

0.
23
62
8

9.
7E
-0
8

4.
2E
-0
8

F1
1

0.
00
02
89

0.
00
15
86

0
0

0
0

0.
00
92
15

0.
00
77
24

27
.7
01
54

5.
04
03
43

0
0

F1
2

0.
33
96
76

0.
21
48
64

0.
00
65

0.
00
57

0.
01
41

0.
01
07

0.
00
69
17

0.
02
63
01

1.
79
96
17

0.
95
11
4

7.
9E

-1
5

8E
-1
5

F1
3

1.
88
90
15

0.
26
60
88

0.
12
47

0.
08
95

0.
35
37

0.
20
81

0.
00
66
75

0.
00
89
07

8.
89
90
84

7.
12
62
41

5.
1E

-1
4

4.
8E

-1
4
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Table 7 Optimisation results obtained for fixed-dimension multimodal optimisation functions
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M
W
O
A

AL
M
W
O
A
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O

G
SA

D
E

AV
SD

AV
SD

AV
SD

AV
SD

AV
SD

AV
SD

F1
4

2.
11
19
73

2.
49
85
94

1.
32
90

0.
65
59

3.
45
13

3.
52
29

3.
62
71
68

2.
56
08
28

5.
85
98
38

3.
83
12
99

0.
99
80
04

3.
3E

-1
6

F1
5

0.
00
05
72

0.
00
03
24

0.
00
04
79
46

0.
00
02
67
48

0.
00
04
64
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0.
00
01
56
63

0.
00
05
77

0.
00
02
22

0.
00
36
73

0.
00
16
47

4.
5E

-1
4

0.
00
03
3

F1
6

–1
.0
31
63

4.
2E
-0
7

–1
.0
31
63

1.
16
44
E-
06

–1
.0
31
63

5.
54
19
E-
08

–1
.0
31
63

6.
25
E-
16

–1
.0
31
63

4.
88
E-
16

–1
.0
31
63

3.
1E

-1
3

F1
7

0.
39
79
14

2.
7E
-0
5

0.
39
78
87

2.
26
93
E-
04

0.
39
78
87

2.
55
68
E-
06

0.
39
78
87

0
0.
39
78
87

0
0.
39
78
87

9.
9E
-0
9

F1
8

3
4.
22
E-
15

3
5.
58
69
E-
04

3
1.
11
E-
15

3
1.
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15

3
4.
17
E-
15

3
2E
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5

F1
9
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.8
56
16
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27
06
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.8
56
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.8
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0
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.8
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2.
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E-
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78

2.
29
E-
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N
/A

N
/A

F2
0
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.9
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05
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.2
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5

0.
02
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–3
.3
23

0.
01
81
34

–3
.2
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0.
06
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–3
.3
17
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0.
02
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81

N
/A

N
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F2
1

–7
.0
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3.
62
95
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.6
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4
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4

1.
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–6
.8
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1
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–5
.9
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3.
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–1
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0.
00
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02
5

F2
2

–8
.1
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3.
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–9
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4

1.
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–1
0.
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0.
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–8
.4
56
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3.
08
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–9
.6
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–1
0.
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9E
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7

F2
3

–9
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2.
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–9
.8
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8

1.
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–1
0.
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1.
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57
E-
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–9
.9
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1.
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–1
0.
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6E
-1
5

–1
0.
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1.
9E
-0
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Figure 16 Convergence plots of WOA, MWOA and ALMWOA algorithms for some
benchmark functions (see online version for colours)

Figure 17 Convergence plots of WOA, MWOA and ALMWOA algorithms for some
benchmark functions (see online version for colours)
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In order to observe the behaviour of fitness values vs. the iterations, the convergence
plots of WOA, MWOA and ALMWOA algorithms over the different runs are shown in
Figures 16 and 17.

As can be observed, the MWOA and ALMWOA algorithms are superior to WOA
algorithm but the ALMWOA algorithm is converging fast towards optima from the
initial steps of iterations in comparison to WOA, MWOA algorithms. Hence, the
ALMWOA algorithm gains from good exploration and exploitation, which consequently
helps the ALMWOA algorithm to avoid being stuck at local optimal solutions.

6 Conclusions

This paper proposed two modified optimisation algorithms based on WOA algorithm
called MWOA and ALMWOA. In the proposed MWOA algorithm, archimedes’ spiral
is adopted to mimic the spiral position update of the humpback whales to enhance
convergence rate of standard WOA algorithm and avoid it of being stuck at local optimal
solutions over the algorithm iterations. While, ALMWOA algorithm incorporate MWOA
with Laplace crossover to insure the diversity of search space and improve the capability
to avoid local optimal solutions. To evaluate the performance of these two proposed
algorithms, 23 benchmark functions are employed and results are compared with WOA,
PSO, GSA and DE. Experimental results illustrate that our proposed algorithms can
provide highly competitive results in a majority of benchmark functions because of their
fast convergence and little chance to get stuck at local optima. Our future work direction
will be to apply our proposed algorithms to solve many engineering optimisation
problems. In addition, future work can focus on developing new versions of WOA.
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