Numerical simulation study on hydraulic fracture propagation in heavy oil reservoir with THM coupling
by Yongquan Hu; Qiang Wang; Jinzhou Zhao; Ziyi Guo; Yong Zhang; Chun Mao
International Journal of Oil, Gas and Coal Technology (IJOGCT), Vol. 24, No. 2, 2020

Abstract: The aim of the study involves examining the effect of heavy oil viscosity on fracture geometry in detail by establishing a heavy oil fracturing model and conventional fracturing model based on thermal-hydraulic-mechanical (THM) coupled theory, Walther viscosity model, and K-D-R temperature model. The results show that temperature exhibits the most significant influence on the heavy oil viscosity while the influence of pressure is the least. The special viscosity distribution results in significant differences in pore pressure, oil saturation, and changing trends between these two models. In the heavy oil reservoir fracturing model, the thermal effect completely exceeds the influence of pore elasticity, and the values of the fracture length, width, and static pressure exceed those calculated in the conventional fracturing model. Thus, a comparison of the measured values indicates that the results obtained by considering viscosity as a function of temperature and pressure are more accurate. [Received: February 9, 2018; Accepted: August 8, 2018]

Online publication date: Fri, 01-May-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Oil, Gas and Coal Technology (IJOGCT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com