Investigation on the equivalent mechanical longitudinal fluid sloshing model for a partially filled tank vehicle
by Xiujian Yang; Chuqi Feng
International Journal of Vehicle Performance (IJVP), Vol. 6, No. 2, 2020

Abstract: This paper aims to investigate the equivalent mechanical model of longitudinal fluid sloshing for a partially filled tank vehicle. A one-degree-of-freedom (1DOF) mass-spring-damping (MSD) equivalent mechanical model proposed in the literature is first evaluated. To improve the precision of the MSD model, two 2DOF models those are the serial 2DOF (2DOF-S) model and the parallel 2DOF (2DOF-P) model, and a hybrid 3DOF (3DOF-H) model have been proposed, formulated and evaluated. Comparisons demonstrate that the 3DOF-H model can provide rather satisfying precision in broad ranges of tank ellipticity and fill level. Finally, the proposed 3DOF-H MSD sloshing model is further evaluated from the viewpoint of vehicle dynamics response. It is revealed that it is easy to integrate the 3DOF-H model with vehicle dynamics to build a fluid tank vehicle model which can reflect the basic dynamics property of a tank vehicle.

Online publication date: Wed, 29-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Performance (IJVP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com