Performance analysis of nonlinear activation function in convolution neural network for image classification
by Edna C. Too; Li Yujian; Pius Kwao Gadosey; Sam Njuki; Firdaous Essaf
International Journal of Computational Science and Engineering (IJCSE), Vol. 21, No. 4, 2020

Abstract: Deep learning architectures which are exceptionally deep have exhibited to be incredibly powerful models for image processing. As the architectures become deep, it introduces challenges and difficulties in the training process such as overfitting, computational cost, and exploding/vanishing gradients and degradation. A new state-of-the-art densely connected architecture, called DenseNets, has exhibited an exceptionally outstanding result for image classification. However, it still computationally costly to train DenseNets. The choice of the activation function is also an important aspect in training of deep learning networks because it has a considerable impact on the training and performance of a network model. Therefore, an empirical analysis of some of the nonlinear activation functions used in deep learning is done for image classification. The activation functions evaluated include ReLU, Leaky ReLU, ELU, SELU and an ensemble of SELU and ELU. Publicly available datasets Cifar-10, SVHN, and PlantVillage are used for evaluation.

Online publication date: Fri, 24-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com