Approximate of solution of a fourth order ordinary differential equations via tenth step block method
by Guesh Simretab Gebremedhin; Saumya Ranjan Jena
International Journal of Computing Science and Mathematics (IJCSM), Vol. 11, No. 3, 2020

Abstract: This paper carries a different approach of collection and interpolation to develop a tenth block method for the numerical solution of linear or nonlinear ordinary differential equations of fourth order with initial conditions. The method has been implemented at the selected mesh points to generate a direct tenth block method through Taylor series. Some critical properties of this method such as zero stability, order of the method, and convergence have been analysed. Two numerical tests have taken to make a comparison of the approximate results with exact as well as results of other authors.

Online publication date: Mon, 20-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com