Dynamic study of composite material shaft in high-speed rotor-bearing systems
by Thimothy Harold Gonsalves; G.C. Mohan Kumar; M.R. Ramesh
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 15, No. 2/3, 2019

Abstract: In this work the composite material shaft in high-speed rotor-bearing systems is analysed to achieve better rotor dynamics along with the effect of internal damping of the composite shaft. The pioneering studies on rotating composite shaft and internal damping are revisited to evaluate its effects on rotor dynamics of high-speed rotor-bearing systems. Two practical rotor-bearing systems are selected to study their suitability for composite shaft application where the composite material is used in the cold section while the existing steel alloy is retained in the hot section as well as at the ends. The rotor dynamic analysis shows significant improvements in rotor dynamics of one of the rotor-bearing systems where the first lateral mode changes to desirable rigid mode from flexure mode shape of existing metallic shaft rotor-bearing system. The frequency values of second and third modes also increase above the operating speed indicating a clear advantage in rotor dynamics.

Online publication date: Fri, 03-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com